@article{ZNSL_2018_468_a15,
author = {V. V. Kornyak},
title = {An algorithm for decomposition of finite group representations by means of invariant projectors},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {228--248},
year = {2018},
volume = {468},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a15/}
}
V. V. Kornyak. An algorithm for decomposition of finite group representations by means of invariant projectors. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIX, Tome 468 (2018), pp. 228-248. http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a15/
[1] D. F. Holt, B. Eick, E. A. O'Brien, Handbook of Computational Group Theory, Chapman Hall/CRC, 2005 | MR | Zbl
[2] R. Parker, “The computer calculation of modular characters (the Meat-Axe)”, Computational Group Theory, ed. Atkinson M. D., Academic Press, London, 1984, 267–274 | MR
[3] V. V. Kornyak, “Quantum models based on finite groups”, J. Phys. Conf. Ser., 965 (2018), 012023 ; http://stacks.iop.org/1742-6596/965/i=1/a=012023 | DOI
[4] V. V. Kornyak, “Modeling Quantum Behavior in the Framework of Permutation Groups”, EPJ Web of Conferences, 173 (2018), 01007 | DOI
[5] P. J. Cameron, Permutation Groups, Cambridge University Press, 1999 | MR | Zbl
[6] V. V. Kornyak, “Splitting Permutation Representations of Finite Groups by Polynomial Algebra Methods”, CASC 2018, LNCS, 11077, eds. Gerdt V., Koepf W., Seiler W., Vorozhtsov E., Springer, Cham, 2018, 304–318 | Zbl
[7] R. Wilson, Atlas of finite group representations, http://brauer.maths.qmul.ac.uk/Atlas/v3
[8] W. Bosma, J. Cannon, C. Playoust, A. Steel, Solving Problems with Magma, , University of Sydney, 2006 http://magma.maths.usyd.edu.au/magma/pdf/examples.pdf