On products of Weierstrass sigma functions
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 73-84
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We prove the following result. Let $f\colon\mathbb C\to\mathbb C$ be an even entire function. Let there exist $\alpha_j,\beta_j\colon\mathbb C\to\mathbb C$ with
$$
f(x+y) f(x-y) = \sum_{j=1}^4\alpha_j(x)\beta_j(y),\qquad x,y\in\mathbb C.
$$
Then $f(z)=\sigma_L(z)\cdot\sigma_\Lambda(z)\cdot e^{Az^2+C}$, where $L$ and $\Lambda$ are lattices in $\mathbb C$, $\sigma_L$ is the Weierstrass sigma function associated to the lattice $L$, and $A,C\in\mathbb C$.
			
            
            
            
          
        
      @article{ZNSL_2018_467_a7,
     author = {A. A. Illarionov},
     title = {On products of {Weierstrass} sigma functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {73--84},
     publisher = {mathdoc},
     volume = {467},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a7/}
}
                      
                      
                    A. A. Illarionov. On products of Weierstrass sigma functions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 73-84. http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a7/