On products of Weierstrass sigma functions
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 73-84 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We prove the following result. Let $f\colon\mathbb C\to\mathbb C$ be an even entire function. Let there exist $\alpha_j,\beta_j\colon\mathbb C\to\mathbb C$ with $$ f(x+y) f(x-y) = \sum_{j=1}^4\alpha_j(x)\beta_j(y),\qquad x,y\in\mathbb C. $$ Then $f(z)=\sigma_L(z)\cdot\sigma_\Lambda(z)\cdot e^{Az^2+C}$, where $L$ and $\Lambda$ are lattices in $\mathbb C$, $\sigma_L$ is the Weierstrass sigma function associated to the lattice $L$, and $A,C\in\mathbb C$.
@article{ZNSL_2018_467_a7,
     author = {A. A. Illarionov},
     title = {On products of {Weierstrass} sigma functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {73--84},
     year = {2018},
     volume = {467},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a7/}
}
TY  - JOUR
AU  - A. A. Illarionov
TI  - On products of Weierstrass sigma functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 73
EP  - 84
VL  - 467
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a7/
LA  - ru
ID  - ZNSL_2018_467_a7
ER  - 
%0 Journal Article
%A A. A. Illarionov
%T On products of Weierstrass sigma functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 73-84
%V 467
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a7/
%G ru
%F ZNSL_2018_467_a7
A. A. Illarionov. On products of Weierstrass sigma functions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 73-84. http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a7/

[1] M. Bonk, “The addition theorem of Weierstrass's sigma function”, Math. Ann., 298:1 (1994), 591–610 | DOI | MR | Zbl

[2] V. A. Bykovskii, “Giperkvazimnogochleny i ikh prilozheniya”, Funkts. analiz i ego prilozheniya, 50:3 (2016), 34–46 | DOI | MR | Zbl

[3] R. Rochberg, L. Rubel, “A Functional Equation”, Indiana Univ. Math. J., 41:2 (1992), 363–376 | DOI | MR | Zbl

[4] A. A. Illarionov, “Reshenie funktsionalnykh uravnenii, svyazannykh s ellipticheskimi funktsiyami”, Analiticheskaya teoriya chisel, Sbornik statei. K 80-letiyu so dnya rozhdeniya Anatoliya Alekseevicha Karatsuby, Tr. MIAN, 299, MAIK, M., 2017, 105–117 | DOI

[5] V. M. Bukhshtaber, D. V. Leikin, “Trilineinye funktsionalnye uravneniya”, UMN, 60:2 (2005), 151–152 | DOI | MR | Zbl

[6] P. Sinopoulos, “Generalized sine equation. I”, Aequationes Math., 48 (1994), 171–193 | DOI | MR | Zbl

[7] M. Bonk, “The characterization of theta functions by functional equations”, Abh. Math. Sem. Univ. Hamburg, 65 (1995), 29–55 | DOI | MR | Zbl

[8] M. Bonk, “The addition formula for theta function”, Aequationes Math., 53:1–2 (1997), 54–72 | DOI | MR | Zbl

[9] A. Jarai, W. Sander, “On the characterization of Weierstrass's sigma function”, Functional Equations – Results and Advances, Adv. Math., 3, Kluwer Acad. Publ., Dordrecht, 2002, 29–79 | MR | Zbl

[10] V. A. Bykovskii, “O range nechetnykh giperkvazimnogochlenov”, Dokl. RAN, 470:3 (2016), 255–256 | DOI | Zbl

[11] A. A. Illarionov, “Funktsionalnoe uravnenie i sigma-funktsiya Veiershtrassa”, Funkts. analiz i ego prilozheniya, 50:4 (2016), 43–54 | DOI | MR | Zbl

[12] A. A. Illarionov, M. A. Romanov, “O svyazi mezhdu giperellipticheskimi sistemami posledovatelnostei i funktsii”, Dalnevost. matem. zhurn., 17:2 (2017), 210–220 | MR | Zbl

[13] D. Mamford, Lektsii o teta-funktsiyakh, Izd-vo inostr. liter., M., 1988

[14] S. Stoilov, Teoriya funktsii kompleksnogo peremennogo, v. 1, IL, M., 1962