On the absolute convergence of Fourier--Haar series in the metric of $L^p(0,1)$, $0$
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 34-54
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is proved that for any $0\epsilon1$ there exists a measurable set $E\subset[0,1]$ with $|E|>1-\epsilon$ such that for any function $f(x)\in L^1[0,1]$ one can find a function $g(x)\in L^1[0,1]$ equal to $f(x)$ on $E$ such that its Fourier–Haar series converges absolutely in the metric of $L^p(0,1)$, $0$.
			
            
            
            
          
        
      @article{ZNSL_2018_467_a3,
     author = {M. G. Grigoryan},
     title = {On the absolute convergence of {Fourier--Haar} series in the metric of $L^p(0,1)$, $0<p<1$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {34--54},
     publisher = {mathdoc},
     volume = {467},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a3/}
}
                      
                      
                    M. G. Grigoryan. On the absolute convergence of Fourier--Haar series in the metric of $L^p(0,1)$, $0