Homogeneous extensions of the quadratic form of Laplace operator for the field interacting with two point-like particles
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 24, Tome 465 (2017), pp. 46-60 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the set of the closed homogeneous extensions of the quadratic form of Laplace operator, generated by interaction with two point-like sources. We show that this set consists of the trivial (maximal) extension, one point and the subset equivalent to the Riemann sphere.
@article{ZNSL_2017_465_a3,
     author = {T. A. Bolokhov},
     title = {Homogeneous extensions of the quadratic form of {Laplace} operator for the field interacting with two point-like particles},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {46--60},
     year = {2017},
     volume = {465},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_465_a3/}
}
TY  - JOUR
AU  - T. A. Bolokhov
TI  - Homogeneous extensions of the quadratic form of Laplace operator for the field interacting with two point-like particles
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 46
EP  - 60
VL  - 465
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_465_a3/
LA  - ru
ID  - ZNSL_2017_465_a3
ER  - 
%0 Journal Article
%A T. A. Bolokhov
%T Homogeneous extensions of the quadratic form of Laplace operator for the field interacting with two point-like particles
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 46-60
%V 465
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_465_a3/
%G ru
%F ZNSL_2017_465_a3
T. A. Bolokhov. Homogeneous extensions of the quadratic form of Laplace operator for the field interacting with two point-like particles. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 24, Tome 465 (2017), pp. 46-60. http://geodesic.mathdoc.fr/item/ZNSL_2017_465_a3/

[1] F. A. Berezin, L. D. Faddeev, “Zamechanie ob uravnenii Shredingera s singulyarnym potentsialom”, Doklady AN SSSR, 137:5 (1961), 1011–1014 | MR | Zbl

[2] S. Albeverio, P. Kurasov, Singular Perturbation of Differential Operators. Solvable Schrödinger type Operators, Cambridge University Press, 2000 | MR

[3] K. Friedrichs, “Spektraltheorie halbbeschränkter Operatoren”, Math. Ann., 109 (1934), 465–487 ; M. Stone, Linear Transformations in Hilbert spaces and their Applications in Analysis, Amer. Math. Soc. Colloquim Publication, 15, 1932 ; М. Рид, Б. Саймон, Методы современной математической физики, т. 2, Гармонический анализ и самосопряженность, Мир, М., 1978, Теорема X.23 | DOI | MR | Zbl | MR | Zbl

[4] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 2, Garmonicheskii analiz i samosopryazhennost, Mir, M., 1978 | MR

[5] M. G. Krein, “The theory of self-adjoint extensions of semi-bounded Hermitian transformations and its applications”, Rec. Math. (Mat. Sbornik) N.S., 20(62):3 (1947), 431–495 | MR | Zbl

[6] N. I. Akhiezer, I. M. Glazman, Teoriya lineinykh operatorov v Gilbertovom prostranstve, Nauka, M., 1966 | MR