@article{ZNSL_2017_465_a0,
author = {M. V. Babich},
title = {Birational {Darboux} coordinates on nilpotent coadjoint orbits classical complex {Lie} groups, {Jordan} blocks~$2\times2$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--12},
year = {2017},
volume = {465},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_465_a0/}
}
TY - JOUR AU - M. V. Babich TI - Birational Darboux coordinates on nilpotent coadjoint orbits classical complex Lie groups, Jordan blocks $2\times2$ JO - Zapiski Nauchnykh Seminarov POMI PY - 2017 SP - 5 EP - 12 VL - 465 UR - http://geodesic.mathdoc.fr/item/ZNSL_2017_465_a0/ LA - en ID - ZNSL_2017_465_a0 ER -
M. V. Babich. Birational Darboux coordinates on nilpotent coadjoint orbits classical complex Lie groups, Jordan blocks $2\times2$. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 24, Tome 465 (2017), pp. 5-12. http://geodesic.mathdoc.fr/item/ZNSL_2017_465_a0/
[1] M. V. Babich, “Birational Darboux Coordinates on (Co)Adjoint Orbits of $GL(N,\mathbb C)$”, Functional Analysis and Its Applications, 50:1 (2016), 17–30 | DOI | MR | Zbl
[2] M. V. Babich, “On birational Darboux coordinates on coadjoint orbits of classical complex Lie groups”, Zap. Nauchn. Semin. POMI, 432, 2015, 36–57 ftp://ftp.pdmi.ras.ru/pub/publicat/znsl/v432/p036.pdf | MR | Zbl
[3] M. V. Babich, “Young tableaux and stratification of space of complex square matrices”, Zap. Nauchn. Semin. POMI, 433, 2015, 41–64 ftp://ftp.pdmi.ras.ru/pub/publicat/znsl/v433/p041.pdf | MR
[4] S. E. Derkachov, A. N. Manashov, “$R$-matrix and Baxter $Q$-operators for the noncompact $SL(N;C)$ invariant spin chain”, SIGMA, 2 (2006), 084 ; arXiv: nlin.SI/0612003 | DOI | MR | Zbl
[5] M. V. Babich, S. E. Derkachov, “On rational symplectic parametrization of coajoint orbit of $GL(N)$. Diagonalizable case”, Algebra and Analiz, 22:3 (2010), 16–31 | MR | Zbl
[6] M. V. Babich, “About Coordinates on the Phase Spaces of the Schlesinger System and the Garnier-Painlevé 6 System”, Doklady Mathematics, 75:1 (2007), 71 | DOI | MR | Zbl
[7] A. G. Reiman, M. A. Semenov-Tyan'-Shanskii, Integrable systems. Group-theoretic approach, Sovremennaya Matematika, Inst. for Computer Research, Moscow–Izhevsk, 2003
[8] I. M. Gelfand, M. I. Najmark, Unitary representation of classical groups, Tr. Mat. Inst. Steklov, 36, 1950 | MR | Zbl