Decomposition of a $2$-connected graph into three connected subgraphs
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part IX, Tome 464 (2017), pp. 26-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $G$ be a $2$-connected graph on $n$ vertices such that any its $2$-vertex cutset splits $G$ into at most three parts and $n_1+n_2 +n_3=n$. We prove that there exists a decomposition of the vertex set of $G$ into three disjoint subsets $V_1$, $V_2$, $V_3$, such that $|V_i|=n_i$ and the induced subgraph $G(V_i)$ is connected for each $i$.
@article{ZNSL_2017_464_a1,
     author = {D. V. Karpov},
     title = {Decomposition of a~$2$-connected graph into three connected subgraphs},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {26--47},
     year = {2017},
     volume = {464},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_464_a1/}
}
TY  - JOUR
AU  - D. V. Karpov
TI  - Decomposition of a $2$-connected graph into three connected subgraphs
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 26
EP  - 47
VL  - 464
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_464_a1/
LA  - ru
ID  - ZNSL_2017_464_a1
ER  - 
%0 Journal Article
%A D. V. Karpov
%T Decomposition of a $2$-connected graph into three connected subgraphs
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 26-47
%V 464
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_464_a1/
%G ru
%F ZNSL_2017_464_a1
D. V. Karpov. Decomposition of a $2$-connected graph into three connected subgraphs. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part IX, Tome 464 (2017), pp. 26-47. http://geodesic.mathdoc.fr/item/ZNSL_2017_464_a1/

[1] E. Györi, “On division of graphs to connected subgraphs”, Combinatorics, Colloq. Math. Soc. Janos Bolyai, 18, Keszthely, Hungary, 1976, 485–494 | MR

[2] L. Lovász, “A homology theory for spanning trees of a graph”, Acta Math. Acad. Sci. Hungaricae, 30 (1977), 241–251 | DOI | MR

[3] W. T. Tutte, Connectivity in graphs, Univ. Toronto Press, Toronto, 1966 | MR | Zbl

[4] F. Harary, Graph theory, 1969 | MR | MR

[5] D. V. Karpov, A. V. Pastor, “O strukture $k$-svyaznogo grafa”, Zap. nauchn. semin. POMI, 266, 2000, 76–106 | MR | Zbl

[6] D. V. Karpov, “Bloki v $k$-svyaznykh grafakh”, Zap. nauchn. semin. POMI, 293, 2002, 59–93 | MR | Zbl

[7] D. V. Karpov, “Razdelyayuschie mnozhestva v $k$-svyaznom grafe”, Zap. nauchn. semin. POMI, 340, 2006, 33–60 | MR | Zbl

[8] D. V. Karpov, “Derevo razbieniya dvusvyaznogo grafa”, Zap. nauchn. semin. POMI, 417, 2013, 86–105

[9] D. V. Karpov, “Minimalnye dvusvyaznye grafy”, Zap. nauchn. semin. POMI, 417, 2013, 106–127