On optimal matching of Gaussian samples
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 25, Tome 457 (2017), pp. 226-264
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $X_1,\dots,X_n$ be independent random variables with common distribution the standard Gaussian measure $\mu$ on $\mathbb R^2$, and let $\mu_n=\frac1n\sum_{i=1}^n\delta_{X_i}$ be the associated empirical measure. We show that, for some numerical constant $C>0$,
$$
\frac1C\frac{\log n}n\leq\mathbb E(\mathrm W_2^2(\mu_n,\mu))\leq C\frac{(\log n)^2}n
$$
where $\mathrm W_2$ is the quadratic Kantorovich metric, and conjecture that the left-hand side provides the correct order. The proof is based on the recent PDE and mass transportation approach developed by L. Ambrosio, F. Stra and D. Trevisan.
@article{ZNSL_2017_457_a12,
author = {M. Ledoux},
title = {On optimal matching of {Gaussian} samples},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {226--264},
publisher = {mathdoc},
volume = {457},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a12/}
}
M. Ledoux. On optimal matching of Gaussian samples. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 25, Tome 457 (2017), pp. 226-264. http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a12/