On optimal matching of Gaussian samples
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 25, Tome 457 (2017), pp. 226-264

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X_1,\dots,X_n$ be independent random variables with common distribution the standard Gaussian measure $\mu$ on $\mathbb R^2$, and let $\mu_n=\frac1n\sum_{i=1}^n\delta_{X_i}$ be the associated empirical measure. We show that, for some numerical constant $C>0$, $$ \frac1C\frac{\log n}n\leq\mathbb E(\mathrm W_2^2(\mu_n,\mu))\leq C\frac{(\log n)^2}n $$ where $\mathrm W_2$ is the quadratic Kantorovich metric, and conjecture that the left-hand side provides the correct order. The proof is based on the recent PDE and mass transportation approach developed by L. Ambrosio, F. Stra and D. Trevisan.
@article{ZNSL_2017_457_a12,
     author = {M. Ledoux},
     title = {On optimal matching of {Gaussian} samples},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {226--264},
     publisher = {mathdoc},
     volume = {457},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a12/}
}
TY  - JOUR
AU  - M. Ledoux
TI  - On optimal matching of Gaussian samples
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 226
EP  - 264
VL  - 457
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a12/
LA  - en
ID  - ZNSL_2017_457_a12
ER  - 
%0 Journal Article
%A M. Ledoux
%T On optimal matching of Gaussian samples
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 226-264
%V 457
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a12/
%G en
%F ZNSL_2017_457_a12
M. Ledoux. On optimal matching of Gaussian samples. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 25, Tome 457 (2017), pp. 226-264. http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a12/