Smoothness of a~holomorphic function and its modulus on the boundary of a~polydisk
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 45, Tome 456 (2017), pp. 172-176

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that if a function $f$ is holomorphic in the polydisk $\mathbb D^n$, $n\ge2$, $f$ is continuous in $\overline{\mathbb D^n}$, $f(z)\ne0$, $z\in\mathbb D^n$, and $|f|$ belongs to the $\alpha$-Hölder class, $0\alpha1$, on the boundary of $\mathbb D^n$ then $f$ belongs to the $(\frac\alpha2-\varepsilon)$-Hölder class on $\overline{\mathbb D^n}$ for any $\varepsilon>0$.
@article{ZNSL_2017_456_a14,
     author = {N. A. Shirokov},
     title = {Smoothness of a~holomorphic function and its modulus on the boundary of a~polydisk},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {172--176},
     publisher = {mathdoc},
     volume = {456},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a14/}
}
TY  - JOUR
AU  - N. A. Shirokov
TI  - Smoothness of a~holomorphic function and its modulus on the boundary of a~polydisk
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 172
EP  - 176
VL  - 456
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a14/
LA  - ru
ID  - ZNSL_2017_456_a14
ER  - 
%0 Journal Article
%A N. A. Shirokov
%T Smoothness of a~holomorphic function and its modulus on the boundary of a~polydisk
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 172-176
%V 456
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a14/
%G ru
%F ZNSL_2017_456_a14
N. A. Shirokov. Smoothness of a~holomorphic function and its modulus on the boundary of a~polydisk. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 45, Tome 456 (2017), pp. 172-176. http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a14/