@article{ZNSL_2016_454_a11,
author = {D. Krachun and Yu. Yakubovich},
title = {Random partitions induced by random maps},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {195--215},
year = {2016},
volume = {454},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a11/}
}
D. Krachun; Yu. Yakubovich. Random partitions induced by random maps. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 24, Tome 454 (2016), pp. 195-215. http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a11/
[1] E. R. Canfield, “Meet and join within the lattice of set partitions”, Electron. J. Combin., 8:1 (2001), Research Paper 15, 8 pp. | MR | Zbl
[2] W. Y. C. Chen, D. G. L. Wang, “Minimally intersecting set partitions of type $B$”, Electron. J. Combin., 17:1 (2010), Research Paper 22, 16 pp. | MR
[3] J. Engbers, A. Hammett, “Trivial meet and join within the lattice of monotone triangles”, Electron. J. Combin., 21:3 (2014), Paper 3.13, 15 pp. | MR | Zbl
[4] P. Flajolet, P. J. Grabner, P. Kirschenhofer, H. Prodinger, “On Ramanujan's $Q$-function”, J. Comput. Appl. Math., 58:1 (1995), 103–116 | DOI | MR | Zbl
[5] L. C. Hsu, “Note on an asymptotic expansion of the $n$th difference of zero”, Ann. Math. Statist., 19 (1948), 273–277 | DOI | MR | Zbl
[6] S. Janson, T. Łuczak, A. Rucinski, Random graphs, Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley-Interscience, New York, 2000 | MR | Zbl
[7] O. Johnson, C. Goldschmidt, “Preserving of log-concavity on summation”, ESAIM: Probab. Statist., 10 (2006), 206–215 | DOI | MR | Zbl
[8] B. Pittel, “Where the typical set partitions meet and join”, Electron. J. Combin., 7 (2000), Research Paper 5, 15 pp. | MR | Zbl
[9] D. Knut, Iskusstvo programmirovaniya, v. 1, Osnovnye algoritmy, Vilyams, M., 2015 | MR
[10] R. Stenli, Perechislitelnaya kombinatorika, Mir, M., 1990 | MR
[11] E. G. Tsylova, “Veroyatnostnye metody polucheniya asimptoticheskikh formul dlya obobschennykh chisel Stirlinga”, Statist. sbornik, 8, 1991, 165–178 | MR