Random partitions induced by random maps
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 24, Tome 454 (2016), pp. 195-215

Voir la notice de l'article provenant de la source Math-Net.Ru

The lattice of the set partitions of $[n]$ ordered by refinement is studied. Given a map $\phi\colon[n]\to[n]$, by taking preimages of elements we construct a partition of $[n]$. Suppose $t$ partitions $p_1,p_2,\dots,p_t$ are chosen independently according to the uniform measure on the set of mappings $[n]\to[n]$. The probability that the coarsest refinement of all $p_i$'s is the finest partitions $\{\{1\},\dots,\{n\}\}$ is shown to approach $1$ for any $t\geq3$ and $e^{-1/2}$ for $t=2$. The probability that the finest coarsening of all $p_i$'s is the one-block partition is shown to approach $1$ if $t(n)-\log n\to\infty$ and $0$ if $t(n)-\log n\to-\infty$. The size of the maximal block of the finest coarsening of all $p_i$'s for a fixed $t$ is also studied.
@article{ZNSL_2016_454_a11,
     author = {D. Krachun and Yu. Yakubovich},
     title = {Random partitions induced by random maps},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {195--215},
     publisher = {mathdoc},
     volume = {454},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a11/}
}
TY  - JOUR
AU  - D. Krachun
AU  - Yu. Yakubovich
TI  - Random partitions induced by random maps
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 195
EP  - 215
VL  - 454
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a11/
LA  - ru
ID  - ZNSL_2016_454_a11
ER  - 
%0 Journal Article
%A D. Krachun
%A Yu. Yakubovich
%T Random partitions induced by random maps
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 195-215
%V 454
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a11/
%G ru
%F ZNSL_2016_454_a11
D. Krachun; Yu. Yakubovich. Random partitions induced by random maps. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 24, Tome 454 (2016), pp. 195-215. http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a11/