Diffraction by a~narrow cone at skew incidence
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 46, Tome 451 (2016), pp. 5-13

Voir la notice de l'article provenant de la source Math-Net.Ru

The scalar problem of plane wave diffraction by a narrow cone is considered. The angle of the cone $\alpha$ and the angle of incidence are assumed to be small and the field is studied in a boundary layer near the surface at such distances $z$ from the cone tip that $kz\sim\alpha^{-2}$. The parabolic equation method is applied and the leading order approximation is constructed in the form of an integral.
@article{ZNSL_2016_451_a0,
     author = {I. V. Andronov},
     title = {Diffraction by a~narrow cone at skew incidence},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--13},
     publisher = {mathdoc},
     volume = {451},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_451_a0/}
}
TY  - JOUR
AU  - I. V. Andronov
TI  - Diffraction by a~narrow cone at skew incidence
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 5
EP  - 13
VL  - 451
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_451_a0/
LA  - ru
ID  - ZNSL_2016_451_a0
ER  - 
%0 Journal Article
%A I. V. Andronov
%T Diffraction by a~narrow cone at skew incidence
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 5-13
%V 451
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_451_a0/
%G ru
%F ZNSL_2016_451_a0
I. V. Andronov. Diffraction by a~narrow cone at skew incidence. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 46, Tome 451 (2016), pp. 5-13. http://geodesic.mathdoc.fr/item/ZNSL_2016_451_a0/