Bounds on the dynamic chromatic number of a~graph in terms of the chromatic number
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part VIII, Tome 450 (2016), pp. 37-42
Voir la notice de l'article provenant de la source Math-Net.Ru
A vertex coloring of a graph is called dynamic, if the neighborhood of any vertex of degree at least 2 contains at least two vertices of distinct colors. Similarly to the chromatic number $\chi(G)$ of the graph $G$ one can define its dynamic number $\chi_d(G)$ (the minimal number of colors in a dynamic coloring) and dynamic chromatic number $\chi_2(G)$ (the minimal number of colors in a proper dynamic coloring). We prove that $\chi_2(G)\le\chi(G)\cdot\chi_d(G)$ and construct an infinite series of graphs for which this bound on $\chi_2(G)$ is tight.
For a graph $G$ set $k=\lceil\frac{2\Delta(G)}{\delta(G)}\rceil$. We prove that $\chi_2(G)\le (k+1)c$. Moreover, in the case where $k\ge3$ and $\Delta(G)\ge3$ we prove a stronger bound $\chi_2(G)\le kc$.
@article{ZNSL_2016_450_a2,
author = {N. Y. Vlasova and D. V. Karpov},
title = {Bounds on the dynamic chromatic number of a~graph in terms of the chromatic number},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {37--42},
publisher = {mathdoc},
volume = {450},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_450_a2/}
}
TY - JOUR AU - N. Y. Vlasova AU - D. V. Karpov TI - Bounds on the dynamic chromatic number of a~graph in terms of the chromatic number JO - Zapiski Nauchnykh Seminarov POMI PY - 2016 SP - 37 EP - 42 VL - 450 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2016_450_a2/ LA - ru ID - ZNSL_2016_450_a2 ER -
N. Y. Vlasova; D. V. Karpov. Bounds on the dynamic chromatic number of a~graph in terms of the chromatic number. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part VIII, Tome 450 (2016), pp. 37-42. http://geodesic.mathdoc.fr/item/ZNSL_2016_450_a2/