On the connection between the chromatic number of a~graph and the number of cycles, covering a~vertex or an edge
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part VIII, Tome 450 (2016), pp. 5-13

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove several tight bounds on the chromatic number of a graph in terms of the minimal number of simple cycles, covering a vertex or an edge of this graph. Namely, we prove that $\chi(G)\leq k$ in the following two cases: any edge of $G$ is covered by less than $[e(k-1)!-1]$ simple cycles or any vertex of $G$ is covered by less than $[\frac{ek!}2-\frac{k+1}2]$ simple cycles. Tight bounds on the number of simple cycles covering an edge or a vertex of a $k$-critical graph are also proved.
@article{ZNSL_2016_450_a0,
     author = {S. L. Berlov and K. I. Tyschuk},
     title = {On the connection between the chromatic number of a~graph and the number of cycles, covering a~vertex or an edge},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--13},
     publisher = {mathdoc},
     volume = {450},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_450_a0/}
}
TY  - JOUR
AU  - S. L. Berlov
AU  - K. I. Tyschuk
TI  - On the connection between the chromatic number of a~graph and the number of cycles, covering a~vertex or an edge
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 5
EP  - 13
VL  - 450
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_450_a0/
LA  - ru
ID  - ZNSL_2016_450_a0
ER  - 
%0 Journal Article
%A S. L. Berlov
%A K. I. Tyschuk
%T On the connection between the chromatic number of a~graph and the number of cycles, covering a~vertex or an edge
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 5-13
%V 450
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_450_a0/
%G ru
%F ZNSL_2016_450_a0
S. L. Berlov; K. I. Tyschuk. On the connection between the chromatic number of a~graph and the number of cycles, covering a~vertex or an edge. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part VIII, Tome 450 (2016), pp. 5-13. http://geodesic.mathdoc.fr/item/ZNSL_2016_450_a0/