On the $p$-harmonic Robin radius in the Euclidean space
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 32, Tome 449 (2016), pp. 196-213
Voir la notice de l'article provenant de la source Math-Net.Ru
For $p>1$, the notion of the $p$-harmonic Robin radius is introduced in the space $\mathbb R^n$, $n\geq2$. If the corresponding part of the boundary degenerates the Robin–Neumann radius is considered. The monotonicity of the $p$-harmonic Robin radius under some deformations of a domain is proved. In the Euclidean space, some extremal decomposition problems are solved. The definitions and proofs are based on the technique of modules of curve families.
@article{ZNSL_2016_449_a8,
author = {S. I. Kalmykov and E. G. Prilepkina},
title = {On the $p$-harmonic {Robin} radius in the {Euclidean} space},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {196--213},
publisher = {mathdoc},
volume = {449},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_449_a8/}
}
S. I. Kalmykov; E. G. Prilepkina. On the $p$-harmonic Robin radius in the Euclidean space. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 32, Tome 449 (2016), pp. 196-213. http://geodesic.mathdoc.fr/item/ZNSL_2016_449_a8/