On the $p$-harmonic Robin radius in the Euclidean space
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 32, Tome 449 (2016), pp. 196-213

Voir la notice de l'article provenant de la source Math-Net.Ru

For $p>1$, the notion of the $p$-harmonic Robin radius is introduced in the space $\mathbb R^n$, $n\geq2$. If the corresponding part of the boundary degenerates the Robin–Neumann radius is considered. The monotonicity of the $p$-harmonic Robin radius under some deformations of a domain is proved. In the Euclidean space, some extremal decomposition problems are solved. The definitions and proofs are based on the technique of modules of curve families.
@article{ZNSL_2016_449_a8,
     author = {S. I. Kalmykov and E. G. Prilepkina},
     title = {On the $p$-harmonic {Robin} radius in the {Euclidean} space},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {196--213},
     publisher = {mathdoc},
     volume = {449},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_449_a8/}
}
TY  - JOUR
AU  - S. I. Kalmykov
AU  - E. G. Prilepkina
TI  - On the $p$-harmonic Robin radius in the Euclidean space
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 196
EP  - 213
VL  - 449
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_449_a8/
LA  - ru
ID  - ZNSL_2016_449_a8
ER  - 
%0 Journal Article
%A S. I. Kalmykov
%A E. G. Prilepkina
%T On the $p$-harmonic Robin radius in the Euclidean space
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 196-213
%V 449
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_449_a8/
%G ru
%F ZNSL_2016_449_a8
S. I. Kalmykov; E. G. Prilepkina. On the $p$-harmonic Robin radius in the Euclidean space. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 32, Tome 449 (2016), pp. 196-213. http://geodesic.mathdoc.fr/item/ZNSL_2016_449_a8/