A set of~$12$ numbers is not determined by its set of $4$-sums
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXVII, Tome 448 (2016), pp. 135-142

Voir la notice de l'article provenant de la source Math-Net.Ru

We present two sets of $12$ integers that have the same sets of $4$-sums. The proof of the uniqueness of determination of a set of $12$ numbers by its set of $4$-sums published 50 years ago is wrong, and we demonstrate an incorrect calculation in it.
@article{ZNSL_2016_448_a8,
     author = {J. E. Isomurodov and K. P. Kokhas},
     title = {A set of~$12$ numbers is not determined by its set of $4$-sums},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {135--142},
     publisher = {mathdoc},
     volume = {448},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_448_a8/}
}
TY  - JOUR
AU  - J. E. Isomurodov
AU  - K. P. Kokhas
TI  - A set of~$12$ numbers is not determined by its set of $4$-sums
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 135
EP  - 142
VL  - 448
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_448_a8/
LA  - ru
ID  - ZNSL_2016_448_a8
ER  - 
%0 Journal Article
%A J. E. Isomurodov
%A K. P. Kokhas
%T A set of~$12$ numbers is not determined by its set of $4$-sums
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 135-142
%V 448
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_448_a8/
%G ru
%F ZNSL_2016_448_a8
J. E. Isomurodov; K. P. Kokhas. A set of~$12$ numbers is not determined by its set of $4$-sums. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXVII, Tome 448 (2016), pp. 135-142. http://geodesic.mathdoc.fr/item/ZNSL_2016_448_a8/