On the generating function of discrete Chebyshev polynomials
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXVII, Tome 448 (2016), pp. 124-134

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a closed form for the generating function of the discrete Chebyshev polynomials. The closed form consists of the MacWilliams transform of Jacobi polynomials together with a binomial multiplicative factor. It turns out that the desired closed form is a solution to a special case of the Heun differential equation, and that the closed form implies combinatorial identities that appear quite challenging to prove directly.
@article{ZNSL_2016_448_a7,
     author = {N. Gogin and M. Hirvensalo},
     title = {On the generating function of discrete {Chebyshev} polynomials},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {124--134},
     publisher = {mathdoc},
     volume = {448},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_448_a7/}
}
TY  - JOUR
AU  - N. Gogin
AU  - M. Hirvensalo
TI  - On the generating function of discrete Chebyshev polynomials
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 124
EP  - 134
VL  - 448
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_448_a7/
LA  - en
ID  - ZNSL_2016_448_a7
ER  - 
%0 Journal Article
%A N. Gogin
%A M. Hirvensalo
%T On the generating function of discrete Chebyshev polynomials
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 124-134
%V 448
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_448_a7/
%G en
%F ZNSL_2016_448_a7
N. Gogin; M. Hirvensalo. On the generating function of discrete Chebyshev polynomials. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXVII, Tome 448 (2016), pp. 124-134. http://geodesic.mathdoc.fr/item/ZNSL_2016_448_a7/