On the ring of local unitary invariants for mixed $X$-states of two qubits
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXVII, Tome 448 (2016), pp. 107-123
Voir la notice de l'article provenant de la source Math-Net.Ru
Entangling properties of a mixed two-qubit system can be described by local homogeneous unitary invariant polynomials in the elements of the density matrix. The structure of the corresponding ring of invariant polynomials for a special subclass of states, the so-called mixed $X$-states, is established. It is shown that for the $X$-states there is an injective ring homomorphism of the quotient ring of $SU(2)\times SU(2)$-invariant polynomials modulo its syzygy ideal to the $SO(2)\times SO(2)$-invariant ring freely generated by five homogeneous polynomials of degrees $1,1,1,2,2$.
@article{ZNSL_2016_448_a6,
author = {V. Gerdt and A. Khvedelidze and Yu. Palii},
title = {On the ring of local unitary invariants for mixed $X$-states of two qubits},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {107--123},
publisher = {mathdoc},
volume = {448},
year = {2016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_448_a6/}
}
TY - JOUR AU - V. Gerdt AU - A. Khvedelidze AU - Yu. Palii TI - On the ring of local unitary invariants for mixed $X$-states of two qubits JO - Zapiski Nauchnykh Seminarov POMI PY - 2016 SP - 107 EP - 123 VL - 448 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2016_448_a6/ LA - en ID - ZNSL_2016_448_a6 ER -
V. Gerdt; A. Khvedelidze; Yu. Palii. On the ring of local unitary invariants for mixed $X$-states of two qubits. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXVII, Tome 448 (2016), pp. 107-123. http://geodesic.mathdoc.fr/item/ZNSL_2016_448_a6/