Special representations of Iwasawa subgroups of simple Lie groups
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXVII, Tome 448 (2016), pp. 96-106

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, a family of representations of maximal solvable subgroups of the simple Lie groups $O(p,q)$, $U(p,q)$, and $\mathrm{Sp}(p,q)$, where $1\leq p\leq q$, is introduced. These subgroups are called the Iwasawa subgroups of the corresponding simple groups. The main property of these representations is the existence of nontrivial $1$-cohomology with values in the representations. For groups of rank $1$, the representations from the family are unitary; for ranks greater than $1$, they are nonunitary. The paper continues a series of our previous papers and serves as an introduction to the theory of nonunitary current groups.
@article{ZNSL_2016_448_a5,
     author = {A. M. Vershik and M. I. Graev},
     title = {Special representations of {Iwasawa} subgroups of simple {Lie} groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {96--106},
     publisher = {mathdoc},
     volume = {448},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_448_a5/}
}
TY  - JOUR
AU  - A. M. Vershik
AU  - M. I. Graev
TI  - Special representations of Iwasawa subgroups of simple Lie groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 96
EP  - 106
VL  - 448
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_448_a5/
LA  - ru
ID  - ZNSL_2016_448_a5
ER  - 
%0 Journal Article
%A A. M. Vershik
%A M. I. Graev
%T Special representations of Iwasawa subgroups of simple Lie groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 96-106
%V 448
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_448_a5/
%G ru
%F ZNSL_2016_448_a5
A. M. Vershik; M. I. Graev. Special representations of Iwasawa subgroups of simple Lie groups. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXVII, Tome 448 (2016), pp. 96-106. http://geodesic.mathdoc.fr/item/ZNSL_2016_448_a5/