Multi-dimensional random walks and integrable phase models
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXVII, Tome 448 (2016), pp. 48-68

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider random multi-dimensional lattice walks bounded by a hyperplane, calling them walks over multi-dimensional simplicial lattices. We demonstrate that generating functions of these walks are dynamical correlation functions of a certain type of exactly solvable quantum phase models describing strongly correlated bosons on a chain. Walks over oriented lattices are related to the phase model with a non-Hermitian Hamiltonian, while walks over disoriented ones are related to the model with a Hermitian Hamiltonian. The calculation of the generating functions is based on the algebraic Bethe Ansatz approach to the solution of integrable models. The answers are expressed through symmetric functions. Continuous-time quantum walks bounded by a one-dimensional lattice of finite length are also studied.
@article{ZNSL_2016_448_a2,
     author = {N. Bogoliubov and C. Malyshev},
     title = {Multi-dimensional random walks and integrable phase models},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {48--68},
     publisher = {mathdoc},
     volume = {448},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_448_a2/}
}
TY  - JOUR
AU  - N. Bogoliubov
AU  - C. Malyshev
TI  - Multi-dimensional random walks and integrable phase models
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 48
EP  - 68
VL  - 448
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_448_a2/
LA  - en
ID  - ZNSL_2016_448_a2
ER  - 
%0 Journal Article
%A N. Bogoliubov
%A C. Malyshev
%T Multi-dimensional random walks and integrable phase models
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 48-68
%V 448
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_448_a2/
%G en
%F ZNSL_2016_448_a2
N. Bogoliubov; C. Malyshev. Multi-dimensional random walks and integrable phase models. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXVII, Tome 448 (2016), pp. 48-68. http://geodesic.mathdoc.fr/item/ZNSL_2016_448_a2/