Diagonal complexes for punctured polygons
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXVII, Tome 448 (2016), pp. 246-251

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known that taken together, all collections of non-intersecting diagonals in a convex planar $n$-gon give rise to a (combinatorial type of a) convex $(n-3)$-dimensional polytope $\mathrm{As}_n$ called the Stasheff polytope, or associahedron. In the paper, we act in a similar way by taking a convex planar $n$-gon with $k$ labeled punctures. All collections of mutually nonintersecting and mutually non-homotopic topological diagonals yield a complex $\mathrm{As}_{n,k}$. We prove that it is a topological ball. We also show a natural cellular fibration $\mathrm{As}_{n,k}\to\mathrm{As}_{n,k-1}$. A special example is delivered by the case $k=1$. Here the vertices of the complex are labeled by all possible permutations together with all possible bracketings on $n$ distinct entries. This hints to a relationship with M. Kapranov's permutoassociahedron.
@article{ZNSL_2016_448_a15,
     author = {G. Panina},
     title = {Diagonal complexes for punctured polygons},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {246--251},
     publisher = {mathdoc},
     volume = {448},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_448_a15/}
}
TY  - JOUR
AU  - G. Panina
TI  - Diagonal complexes for punctured polygons
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 246
EP  - 251
VL  - 448
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_448_a15/
LA  - en
ID  - ZNSL_2016_448_a15
ER  - 
%0 Journal Article
%A G. Panina
%T Diagonal complexes for punctured polygons
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 246-251
%V 448
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_448_a15/
%G en
%F ZNSL_2016_448_a15
G. Panina. Diagonal complexes for punctured polygons. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXVII, Tome 448 (2016), pp. 246-251. http://geodesic.mathdoc.fr/item/ZNSL_2016_448_a15/