Notes on the codimension one conjecture in the operator corona theorem
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 44, Tome 447 (2016), pp. 33-50
Voir la notice de l'article provenant de la source Math-Net.Ru
Answering a question of S. R. Treil (2004), for every $\delta$, $0\delta1$, we constract examples of contractions whose characteristic function $F\in H^\infty(\mathcal E\to\mathcal E_\ast)$ satisfies the conditions $\|F(z)x\|\geq\delta\|x\|$ and $\dim\mathcal E_\ast\ominus F(z)\mathcal E=1$ for every $z\in\mathbb D$, $x\in\mathcal E$, but is not left invertible. Also, we show that the condition $\sup_{z\in\mathbb D}\|I-F(z)^\ast F(z)\|_{\mathfrak S_1}\infty$, where $\mathfrak S_1$ is the trace class of operators, which is sufficient for the left invertibility of the operator-valued function $F$ satisfying the estimate $\|F(z)x\|\geq\delta\|x\|$ for every $z\in\mathbb D$, $x\in\mathcal E$, with some $\delta>0$ (S. R. Treil, 2004), is necessary for the left invertibility of an inner function $F$ such that $\dim\mathcal E_\ast\ominus F(z)\mathcal E\infty$ for some $z\in\mathbb D$.
@article{ZNSL_2016_447_a2,
author = {M. F. Gamal'},
title = {Notes on the codimension one conjecture in the operator corona theorem},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {33--50},
publisher = {mathdoc},
volume = {447},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_447_a2/}
}
M. F. Gamal'. Notes on the codimension one conjecture in the operator corona theorem. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 44, Tome 447 (2016), pp. 33-50. http://geodesic.mathdoc.fr/item/ZNSL_2016_447_a2/