Bounded remainder sets
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 31, Tome 445 (2016), pp. 93-174 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the category $(\mathcal{T,S,X})$ consisting of transformations $\mathcal{S\colon T\to T}$ of spaces $\mathcal T$ with distinguished subsets $\mathcal{X\subset T}$. Let $r_\mathcal X(i,x_0)$ be the distribution function of points from the $\mathcal S$-orbit $x_0,x_1=\mathcal S(x_0),\dots,x_{i-1}=\mathcal S^{i-1}(x_0)$ got in $\mathcal X$, and a deviation $\delta_\mathcal X(i,x_0)$ be defined by the equation $$ r_\mathcal X(i,x_0)=a_\mathcal Xi+\delta_\mathcal X(i,x_0), $$ where $a_\mathcal Xi$ is the average value. If $\delta_\mathcal X(i,x_0)=O(1)$ then such $\mathcal X$ are called bounded remainder sets. In this article the bounded remainder sets $\mathcal X$ are built in the following cases: 1) the space $\mathcal T$ is a circle, a torus or a Klein bottle; 2) the map $\mathcal S$ is a rotation of the circle, a shift or an exchange transformation of the torus; 3) the $\mathcal X$ is a fixed subset $\mathcal{X\subset T}$ or a sequence of subsets depending on the iteration step $i=0,1,2,\dots$
@article{ZNSL_2016_445_a2,
     author = {V. G. Zhuravlev},
     title = {Bounded remainder sets},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {93--174},
     year = {2016},
     volume = {445},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_445_a2/}
}
TY  - JOUR
AU  - V. G. Zhuravlev
TI  - Bounded remainder sets
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 93
EP  - 174
VL  - 445
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_445_a2/
LA  - ru
ID  - ZNSL_2016_445_a2
ER  - 
%0 Journal Article
%A V. G. Zhuravlev
%T Bounded remainder sets
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 93-174
%V 445
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_445_a2/
%G ru
%F ZNSL_2016_445_a2
V. G. Zhuravlev. Bounded remainder sets. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 31, Tome 445 (2016), pp. 93-174. http://geodesic.mathdoc.fr/item/ZNSL_2016_445_a2/

[1] E. Hecke, “Über analytische Funktionen und die Verteilung von Zahlen mod Eins”, Math. Sem. Hamburg Univ., 1 (1921), 54–76 | DOI | MR | Zbl

[2] R. Szüsz, “Über die Verteilung der Vielfachen einer komplexen Zahl nach dem Modul des Einheitsquadrats”, Acta Math. Acad. Sci. Hungar., 5 (1954), 35–39 | DOI | MR | Zbl

[3] V. G. Zhuravlev, “Vlozhenie krugovykh orbit i raspredelenie drobnykh dolei”, Algebra i analiz, 26:6 (2014), 29–68 | MR

[4] V. G. Zhuravlev, “Mnogomernaya teorema Gekke o raspredelenii drobnykh dolei”, Algebra i analiz, 24:1 (2012), 95–130 | MR | Zbl

[5] V. G. Zhuravlev, “Perekladyvayuschiesya toricheskie razvertki i mnozhestva ogranichennogo ostatka”, Zap. nauch. semin. POMI, 392, 2011, 95–145 | MR

[6] V. G. Zhuravlev, “Mnozhestva ogranichennogo ostatka na dvulistnoi nakryvayuschei butylki Kleina”, Zap. nauch. semin. POMI, 429, 2014, 82–105

[7] V. G. Zhuravlev, “Odnomernye razbieniya Fibonachchi”, Izv. RAN. Ser. matem., 71:2 (2007), 89–122 | DOI | MR | Zbl

[8] V. G. Zhuravlev, “Dvukhtsvetnye povoroty edinichnoi okruzhnosti”, Izv. RAN, Ser. matem., 73:1 (2009), 79–120 | DOI | MR | Zbl

[9] V. G. Zhuravlev, “Mnogogranniki ogranichennogo ostatka”, Matematika i informatika, v. 1, Sovr. probl. matem., 16, Mat. in-t PAN, M., 2012, 82–102 | DOI | Zbl

[10] V. G. Zhuravlev, “Mnozhestva ogranichennogo ostatka otnositelno perekladyvanii tora”, Algebra i analiz, 27:2 (2015), 96–131 | MR

[11] V. G. Zhuravlev, “Razbieniya Rozi i mnozhestva ogranichennogo ostatka”, Zap. nauch. semin. POMI, 322, 2005, 83–106 | MR | Zbl

[12] G. Rauzy, “Ensembles àrestes bornés”, Sémin. théor. nombres, Bordeaux, 1984, exp. 24 | MR

[13] A. A. Abrosimova, “Srednie znacheniya otklonenii dlya raspredeleniya tochek na tore”, Nauchnye vedomosti BelGU. Seriya: Matematika. Fizika, 124:5, Vyp. 26 (2012), 5–11

[14] A. V. Shutov, “Ob odnom semeistve dvumernykh mnozhestv ogranichennogo ostatka”, Chebyshevskii sb., 12:4 (2011), 264–271 | MR | Zbl

[15] V. G. Zhuravlev, “Delyaschiesya razbieniya tora i mnozhestva ogranichennogo ostatka”, Zap. nauch. semin. POMI, 440, 2015, 99–122

[16] V. G. Zhuravlev, “Differentsirovanie indutsirovannykh razbienii tora i mnogomernye priblizheniya algebraicheskikh chisel”, Zap. nauch. semin. POMI, 445, 2016, 33–92

[17] S. Ferenczi, “Bounded Remaider Sets”, Acta Arithm., 61:4 (1992), 319–326 | MR | Zbl

[18] E. S. Fedorov, Nachala ucheniya o figurakh, M., 1953

[19] G. F. Voronoi, Sobranie sochinenii, v. 2, Kiev, 1952

[20] V. G. Zhuravlev, “Mnogotsvetnye dinamicheskie razbieniya torov na mnozhestva ogranichennogo ostatka”, Izv. RAN, ser. matem., 79:5 (2015), 65–102 | DOI | MR

[21] I. P. Kornfeld, Ya. G. Sinai, S. V. Fomin, Ergodicheskaya teoriya, M., 1980 | MR

[22] M. Boshernitzan, I. Kornfeld, “Interval translation mappings”, Ergodic Theory Dynam. Systems, 15 (1995), 821–831 | DOI | MR

[23] H. Suzuki, S. Ito, K. Aihara, Double rotations, METR 2003–13, The University of Tokio, Bunkyo-Ku, Tokyo, 2003, 23 pp. | MR

[24] V. G. Zhuravlev, “Odnomernye razbieniya Fibonachchi i indutsirovannye dvutsvetnye povoroty edinichnoi okruzhnosti”, Izv. RAN, ser. matem., 74:2 (2010), 65–108 | DOI | MR | Zbl

[25] H. Weyl, “Über die Gleichverteilung von Zahlen $\mathrm{mod}$ Eins”, Math. Ann., 77 (1916), 313–352 | DOI | MR | Zbl

[26] H. Haller, “Rectangle exchange transformations”, Monatsh. Math., 91:3 (1981), 215–232 | DOI | MR | Zbl

[27] J. Athreya, M. Boshernitzan, “Ergodic properties of compositions of interval exchange maps and rotations”, Nonlinearity, 26:2 (2013), 417–423 | DOI | MR | Zbl