On the mean square of the error term for Dedekind zeta functions
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 30, Tome 440 (2015), pp. 187-204
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $K_n$ be a number field of degree $n$ over $\mathbb Q$. Denote by $D(x,K_n)$ the number of all non-zero integral ideals in $K_n$ with norm $\leq x$. The Dedekind zeta function $\zeta_{K_n}(s)$ is a meromorphic function with a simple pole at $s=1$, with residue, say, $\Lambda_n$. Define
$$
\Delta(x, K_n)=D(x, K_n)-\Lambda_n x.
$$
The history of estimates of $\Delta(x,K_n)$ begins with
$$
\Delta (x, K_n)\ll x^{1-\frac1n}\qquad\text{(Weber (1896))}
$$
and
$$\Delta(x, K_n)\ll x^{\frac{n-1}{n+1}}\qquad\text{(Landau (1917))}.
$$
If $n>2$, then
$$
\int^x_1\Delta(y, K_n)^2\,dy\ll x^{3-\frac4n}\log^nx,
$$
which is a result of Chandrasekharan and Narasimhan (1964).
In this paper the following new results are obtained.
1) For $K_4=\mathbb Q(\root4\of{m})$, $m>1$ is square-free, the author proves
$$
x^{\frac74}\ll\int^x_1\Delta(y,K_4)^2dy\ll x^{\frac74+\varepsilon}.
$$ 2) For $K_6$, the normal closure of a cubic field $K_3$ with the Galois group $S_3$ and discriminant $\Delta0$, the author proves
$$
x^{\frac{11}6}\ll\int^x_1\Delta(y,K_6)^2\,dy\ll x^{2+\varepsilon}.
$$
            
            
            
          
        
      @article{ZNSL_2015_440_a12,
     author = {O. M. Fomenko},
     title = {On the mean square of the error term for {Dedekind} zeta functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {187--204},
     publisher = {mathdoc},
     volume = {440},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a12/}
}
                      
                      
                    O. M. Fomenko. On the mean square of the error term for Dedekind zeta functions. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 30, Tome 440 (2015), pp. 187-204. http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a12/