On the mean square of the error term for Dedekind zeta functions
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 30, Tome 440 (2015), pp. 187-204

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $K_n$ be a number field of degree $n$ over $\mathbb Q$. Denote by $D(x,K_n)$ the number of all non-zero integral ideals in $K_n$ with norm $\leq x$. The Dedekind zeta function $\zeta_{K_n}(s)$ is a meromorphic function with a simple pole at $s=1$, with residue, say, $\Lambda_n$. Define $$ \Delta(x, K_n)=D(x, K_n)-\Lambda_n x. $$ The history of estimates of $\Delta(x,K_n)$ begins with $$ \Delta (x, K_n)\ll x^{1-\frac1n}\qquad\text{(Weber (1896))} $$ and $$\Delta(x, K_n)\ll x^{\frac{n-1}{n+1}}\qquad\text{(Landau (1917))}. $$ If $n>2$, then $$ \int^x_1\Delta(y, K_n)^2\,dy\ll x^{3-\frac4n}\log^nx, $$ which is a result of Chandrasekharan and Narasimhan (1964). In this paper the following new results are obtained. 1) For $K_4=\mathbb Q(\root4\of{m})$, $m>1$ is square-free, the author proves $$ x^{\frac74}\ll\int^x_1\Delta(y,K_4)^2dy\ll x^{\frac74+\varepsilon}. $$ 2) For $K_6$, the normal closure of a cubic field $K_3$ with the Galois group $S_3$ and discriminant $\Delta0$, the author proves $$ x^{\frac{11}6}\ll\int^x_1\Delta(y,K_6)^2\,dy\ll x^{2+\varepsilon}. $$
@article{ZNSL_2015_440_a12,
     author = {O. M. Fomenko},
     title = {On the mean square of the error term for {Dedekind} zeta functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {187--204},
     publisher = {mathdoc},
     volume = {440},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a12/}
}
TY  - JOUR
AU  - O. M. Fomenko
TI  - On the mean square of the error term for Dedekind zeta functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 187
EP  - 204
VL  - 440
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a12/
LA  - ru
ID  - ZNSL_2015_440_a12
ER  - 
%0 Journal Article
%A O. M. Fomenko
%T On the mean square of the error term for Dedekind zeta functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 187-204
%V 440
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a12/
%G ru
%F ZNSL_2015_440_a12
O. M. Fomenko. On the mean square of the error term for Dedekind zeta functions. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 30, Tome 440 (2015), pp. 187-204. http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a12/