Voir la notice du chapitre de livre
@article{ZNSL_2015_440_a12,
author = {O. M. Fomenko},
title = {On the mean square of the error term for {Dedekind} zeta functions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {187--204},
year = {2015},
volume = {440},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a12/}
}
O. M. Fomenko. On the mean square of the error term for Dedekind zeta functions. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 30, Tome 440 (2015), pp. 187-204. http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a12/
[1] E. Landau, Einführung in die elementare und analytische Theorie der algebraischen Zahlen und der Ideale, Leipzig, 1927
[2] O. M. Fomenko, “O dzeta-funktsii Dedekinda. I”, Zap. nauchn. semin. POMI, 418, 2013, 184–197 ; “II”, Зап. научн. семин. ПОМИ, 429, 2014, 178–192
[3] K. Chandrasekharan, R. Narasimhan, “On the mean value of the error term of a class of arithmetical functions”, Acta Math., 112 (1964), 41–67 | DOI | MR | Zbl
[4] Y.-K. Lau, “On the mean square formula of the error term for a class of arithmetical functions”, Monatsh. Math., 128 (1999), 111–129 | DOI | MR | Zbl
[5] O. M. Fomenko, “Teoremy o srednikh znacheniyakh dlya odnogo klassa ryadov Dirikhle”, Zap. nauchn. semin. POMI, 357, 2008, 201–223
[6] K.-C. Tong, “On divisor problems. I”, Acta Math. Sinica, 5 (1955), 313–324 ; “III”, Acta Math. Sinica, 6 (1956), 515–541 | MR | Zbl | Zbl
[7] O. M. Fomenko, “Teoremy o srednikh znacheniyakh dlya avtomorfnykh $L$-funktsii”, Algebra i analiz, 19:5 (2007), 243–261 | MR
[8] J. L. Hafner, “On the representation of the summatory functions of a class of arithmetical functions”, Analytic Number Theory, Lecture Notes in Math., 899, Springer, Berlin, 1981, 148–165 | DOI | MR
[9] K. Chandrasekharan, R. Narasimhan, “The approximate functional equation for a class of zeta-functions”, Math. Ann., 152 (1963), 30–64 | DOI | MR | Zbl
[10] N. Ishii, “Cusp forms of weight one, quartic reciprocity and elliptic curves”, Nagoya Math. J., 98 (1985), 117–137 | MR | Zbl
[11] A. Ivić, “On zeta-functions associated with Fourier coefficients of cusp forms”, Proc. of the Amalfi Conf. on Analytic Number Theory (Maiori, 1989), Salerno, 1992, 231–246 | MR | Zbl
[12] A. Ivić, “Exponent pairs and the zeta-function of Riemann”, Studia Sci. Math. Hungar., 15 (1980), 157–181 | MR | Zbl
[13] E. C. Titchmarsh, The theory of the Riemann zeta-functions, 2nd edn, revised by D. R. Heath-Brown, New York, 1986 | MR
[14] D. R. Heath-Brown, “The twelfth power moment of the Riemann zeta-function”, Quart. J. Math. Oxford Ser. (2), 29 (1978), 443–462 | DOI | MR | Zbl
[15] K. Ramachandra, “Application of a theorem of Montgomery and Vaughan to the zeta-fucntion”, J. London Math. Soc. (2), 10 (1975), 482–486 | DOI | MR | Zbl
[16] T. Meurman, The mean twelfth power of Dirichlet $L$-functions on the critical line, Ann. Acad. Sci. Fennicae, Ser. A. I. Mathematica Dissertationes, 52, Helsinki, 1984, 44 pp. | MR | Zbl
[17] M. Koike, “Higher reciprocity law, modular forms of weight 1 and elliptic curves”, Nagoya Math. J., 98 (1985), 109–115 | MR | Zbl
[18] Dzh. Kassels, A. Frëlikh (red.), Algebraicheskaya teoriya chisel, M., 1969
[19] M. Jutila, Lectures on a method in the theory of exponential sums, Bombay, 1987 | MR
[20] A. Ivić, The Riemann zeta-function, Wiley, New York etc., 1985 | MR | Zbl