On the mean square of the error term for Dedekind zeta functions
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 30, Tome 440 (2015), pp. 187-204
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $K_n$ be a number field of degree $n$ over $\mathbb Q$. Denote by $D(x,K_n)$ the number of all non-zero integral ideals in $K_n$ with norm $\leq x$. The Dedekind zeta function $\zeta_{K_n}(s)$ is a meromorphic function with a simple pole at $s=1$, with residue, say, $\Lambda_n$. Define $$ \Delta(x, K_n)=D(x, K_n)-\Lambda_n x. $$ The history of estimates of $\Delta(x,K_n)$ begins with $$ \Delta (x, K_n)\ll x^{1-\frac1n}\qquad\text{(Weber (1896))} $$ and $$\Delta(x, K_n)\ll x^{\frac{n-1}{n+1}}\qquad\text{(Landau (1917))}. $$ If $n>2$, then $$ \int^x_1\Delta(y, K_n)^2\,dy\ll x^{3-\frac4n}\log^nx, $$ which is a result of Chandrasekharan and Narasimhan (1964). In this paper the following new results are obtained. 1) For $K_4=\mathbb Q(\root4\of{m})$, $m>1$ is square-free, the author proves $$ x^{\frac74}\ll\int^x_1\Delta(y,K_4)^2dy\ll x^{\frac74+\varepsilon}. $$ 2) For $K_6$, the normal closure of a cubic field $K_3$ with the Galois group $S_3$ and discriminant $\Delta<0$, the author proves $$ x^{\frac{11}6}\ll\int^x_1\Delta(y,K_6)^2\,dy\ll x^{2+\varepsilon}. $$
@article{ZNSL_2015_440_a12,
     author = {O. M. Fomenko},
     title = {On the mean square of the error term for {Dedekind} zeta functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {187--204},
     year = {2015},
     volume = {440},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a12/}
}
TY  - JOUR
AU  - O. M. Fomenko
TI  - On the mean square of the error term for Dedekind zeta functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 187
EP  - 204
VL  - 440
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a12/
LA  - ru
ID  - ZNSL_2015_440_a12
ER  - 
%0 Journal Article
%A O. M. Fomenko
%T On the mean square of the error term for Dedekind zeta functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 187-204
%V 440
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a12/
%G ru
%F ZNSL_2015_440_a12
O. M. Fomenko. On the mean square of the error term for Dedekind zeta functions. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 30, Tome 440 (2015), pp. 187-204. http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a12/

[1] E. Landau, Einführung in die elementare und analytische Theorie der algebraischen Zahlen und der Ideale, Leipzig, 1927

[2] O. M. Fomenko, “O dzeta-funktsii Dedekinda. I”, Zap. nauchn. semin. POMI, 418, 2013, 184–197 ; “II”, Зап. научн. семин. ПОМИ, 429, 2014, 178–192

[3] K. Chandrasekharan, R. Narasimhan, “On the mean value of the error term of a class of arithmetical functions”, Acta Math., 112 (1964), 41–67 | DOI | MR | Zbl

[4] Y.-K. Lau, “On the mean square formula of the error term for a class of arithmetical functions”, Monatsh. Math., 128 (1999), 111–129 | DOI | MR | Zbl

[5] O. M. Fomenko, “Teoremy o srednikh znacheniyakh dlya odnogo klassa ryadov Dirikhle”, Zap. nauchn. semin. POMI, 357, 2008, 201–223

[6] K.-C. Tong, “On divisor problems. I”, Acta Math. Sinica, 5 (1955), 313–324 ; “III”, Acta Math. Sinica, 6 (1956), 515–541 | MR | Zbl | Zbl

[7] O. M. Fomenko, “Teoremy o srednikh znacheniyakh dlya avtomorfnykh $L$-funktsii”, Algebra i analiz, 19:5 (2007), 243–261 | MR

[8] J. L. Hafner, “On the representation of the summatory functions of a class of arithmetical functions”, Analytic Number Theory, Lecture Notes in Math., 899, Springer, Berlin, 1981, 148–165 | DOI | MR

[9] K. Chandrasekharan, R. Narasimhan, “The approximate functional equation for a class of zeta-functions”, Math. Ann., 152 (1963), 30–64 | DOI | MR | Zbl

[10] N. Ishii, “Cusp forms of weight one, quartic reciprocity and elliptic curves”, Nagoya Math. J., 98 (1985), 117–137 | MR | Zbl

[11] A. Ivić, “On zeta-functions associated with Fourier coefficients of cusp forms”, Proc. of the Amalfi Conf. on Analytic Number Theory (Maiori, 1989), Salerno, 1992, 231–246 | MR | Zbl

[12] A. Ivić, “Exponent pairs and the zeta-function of Riemann”, Studia Sci. Math. Hungar., 15 (1980), 157–181 | MR | Zbl

[13] E. C. Titchmarsh, The theory of the Riemann zeta-functions, 2nd edn, revised by D. R. Heath-Brown, New York, 1986 | MR

[14] D. R. Heath-Brown, “The twelfth power moment of the Riemann zeta-function”, Quart. J. Math. Oxford Ser. (2), 29 (1978), 443–462 | DOI | MR | Zbl

[15] K. Ramachandra, “Application of a theorem of Montgomery and Vaughan to the zeta-fucntion”, J. London Math. Soc. (2), 10 (1975), 482–486 | DOI | MR | Zbl

[16] T. Meurman, The mean twelfth power of Dirichlet $L$-functions on the critical line, Ann. Acad. Sci. Fennicae, Ser. A. I. Mathematica Dissertationes, 52, Helsinki, 1984, 44 pp. | MR | Zbl

[17] M. Koike, “Higher reciprocity law, modular forms of weight 1 and elliptic curves”, Nagoya Math. J., 98 (1985), 109–115 | MR | Zbl

[18] Dzh. Kassels, A. Frëlikh (red.), Algebraicheskaya teoriya chisel, M., 1969

[19] M. Jutila, Lectures on a method in the theory of exponential sums, Bombay, 1987 | MR

[20] A. Ivić, The Riemann zeta-function, Wiley, New York etc., 1985 | MR | Zbl