A nonperiodic analogue of the Akhiezer--Krein--Favard operators
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 30, Tome 440 (2015), pp. 8-35

Voir la notice de l'article provenant de la source Math-Net.Ru

In what follows, $\sigma>0$, $m,r\in\mathbb N$, $m\geqslant r$, $\mathbf S_{\sigma,m}$ is the space of splines of order $m$ and minimal defect with nodes $\frac{j\pi}\sigma$ ($j\in\mathbb Z$), $A_{\sigma,m}(f)_p$ is the best approximation of a function $f$ by the set $\mathbf S_{\sigma,m}$ in the space $L_p(\mathbb R)$. It is known that for $p=1,+\infty$ \begin{equation} \sup_{f\in W^{(r)}_p(\mathbb R)}\frac{A_{\sigma,m}(f)_p}{\|f^{(r)}\|_p}=\frac{\mathcal K_r}{\sigma^r}.\end{equation} In this paper we construct linear operators $\mathcal X_{\sigma,r,m}$ with their values in $\mathbf S_{\sigma,m}$, such that for all $p\in[1,+\infty]$ and $f\in W_p^{(r)}(\mathbb R)$ $$ \|f-\mathcal X_{\sigma,r,m}(f)\|_p\leqslant\frac{\mathcal K_r}{\sigma^r}\|f^{(r)}\|_p. $$ So we establish the possibility to achieve the upper bounds in (1) by linear methods of approximation, which was unknown before.
@article{ZNSL_2015_440_a1,
     author = {O. L. Vinogradov and A. V. Gladkaya},
     title = {A nonperiodic analogue of the {Akhiezer--Krein--Favard} operators},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {8--35},
     publisher = {mathdoc},
     volume = {440},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a1/}
}
TY  - JOUR
AU  - O. L. Vinogradov
AU  - A. V. Gladkaya
TI  - A nonperiodic analogue of the Akhiezer--Krein--Favard operators
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 8
EP  - 35
VL  - 440
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a1/
LA  - ru
ID  - ZNSL_2015_440_a1
ER  - 
%0 Journal Article
%A O. L. Vinogradov
%A A. V. Gladkaya
%T A nonperiodic analogue of the Akhiezer--Krein--Favard operators
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 8-35
%V 440
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a1/
%G ru
%F ZNSL_2015_440_a1
O. L. Vinogradov; A. V. Gladkaya. A nonperiodic analogue of the Akhiezer--Krein--Favard operators. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 30, Tome 440 (2015), pp. 8-35. http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a1/