@article{ZNSL_2015_440_a1,
author = {O. L. Vinogradov and A. V. Gladkaya},
title = {A nonperiodic analogue of the {Akhiezer{\textendash}Krein{\textendash}Favard} operators},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {8--35},
year = {2015},
volume = {440},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a1/}
}
O. L. Vinogradov; A. V. Gladkaya. A nonperiodic analogue of the Akhiezer–Krein–Favard operators. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 30, Tome 440 (2015), pp. 8-35. http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a1/
[1] J. Favard, “Sur les meilleurs procédés d'approximation de certaines classes des fonctions par des polynomes trigonométriques”, Bull. Sci. Math., 61 (1937), 209–224, 243–256
[2] N. I. Akhiezer, M. G. Krein, “O nailuchshem priblizhenii trigonometricheskimi summami differentsiruemykh periodicheskikh funktsii”, Dokl. AN SSSR, 15:3 (1937), 107–112
[3] S. M. Nikolskii, “Priblizhenie funktsii trigonometricheskimi polinomami v srednem”, Izv. AN SSSR. Ser. mat., 10:9 (1946), 207–256
[4] M. G. Krein, “O nailuchshei approksimatsii nepreryvnykh differentsiruemykh funktsii na vsei veschestvennoi osi”, Dokl. AN SSSR, 18:9 (1938), 619–623
[5] B. Nagy, “Über gewisse Extremalfragen bei transformierten trigonometrischen Entwicklungen. II. Nichtperiodischer Fall”, Ber. Verh. sächs. Akad. Wiss. Leipzig, 91 (1939), 3–24
[6] N. I. Akhiezer, Lektsii po teorii approksimatsii, M., 1965
[7] I. J. Schoenberg, Cardinal spline interpolation, 2 ed., SIAM, Philadelphia, 1993
[8] V. M. Tikhomirov, “Nailuchshie metody priblizheniya i interpolirovaniya differentsiruemykh funktsii v prostranstve $C[-1,1]$”, Mat. sb., 80(122):2 (1969), 290–304 | MR | Zbl
[9] A. A. Ligun, “Inequalities for upper bounds of functionals”, Anal. Math., 2:1 (1976), 11–40 | DOI | MR | Zbl
[10] N. P. Korneičuk, “Exact error bound of approximation by interpolating splines on $L$-metric on the classes $W_p^r$ ($1\leqslant p\infty$) of periodic functions”, Anal. Math., 3:2 (1977), 109–117 | DOI | MR
[11] N. P. Korneichuk, Splainy v teorii priblizheniya, M., 1984 | MR
[12] N. P. Korneichuk, Tochnye konstanty v teorii priblizheniya, M., 1987 | MR
[13] A. F. Timan, Teoriya priblizheniya funktsii deistvitelnogo peremennogo, M., 1960
[14] O. L. Vinogradov, “Analog summ Akhiezera–Kreina–Favara dlya periodicheskikh splainov minimalnogo defekta”, Problemy matematicheskogo analiza, 25, 2003, 29–56 | Zbl
[15] Sun Yunshen, Li Chun, “Nailuchshee priblizhenie nekotorykh klassov gladkikh funktsii na deistvitelnoi osi splainami vysshego poryadka”, Mat. zametki, 48:4 (1990), 148–159 | MR
[16] G. G. Magaril-Ilyaev, “O nailuchshem priblizhenii splainami klassov funktsii na pryamoi”, Trudy Mat. in-ta RAN, 194, 1992, 148–159 | MR | Zbl
[17] G. G. Magaril-Ilyaev, “Srednyaya razmernost, poperechniki i optimalnoe vosstanovlenie sobolevskikh klassov funktsii na pryamoi”, Mat. sb., 182:11 (1991), 1635–1656 | MR
[18] I. J. Schoenberg, “On the remainders and the convergence of cardinal spline interpolation for almost periodic functions”, Studies in spline functions and approximation theory, Academic Press, New York, 1976, 277–303 | MR
[19] C. de Boor, I. J. Schoenberg, “Cardinal interpolation and spline functions VIII. The Budan–Fourier theorem for splines and applications”, Spline functions, Proc. Internat. Sympos. (Karlsruhe, 1975), Lecture Notes Math., 501, 1976, 1–79 | DOI | MR | Zbl
[20] K. Jetter, S. D. Riemenschneider, N. Sivakumar, “Schoenberg's exponential Euler spline curves”, Proc. Roy. Soc. Edinburgh A, 118 (1991), 21–33 | DOI | MR | Zbl
[21] B. M. Makarov, A. N. Podkorytov, Lektsii po veschestvennomu analizu, SPb, 2011