A nonperiodic analogue of the Akhiezer–Krein–Favard operators
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 30, Tome 440 (2015), pp. 8-35 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In what follows, $\sigma>0$, $m,r\in\mathbb N$, $m\geqslant r$, $\mathbf S_{\sigma,m}$ is the space of splines of order $m$ and minimal defect with nodes $\frac{j\pi}\sigma$ ($j\in\mathbb Z$), $A_{\sigma,m}(f)_p$ is the best approximation of a function $f$ by the set $\mathbf S_{\sigma,m}$ in the space $L_p(\mathbb R)$. It is known that for $p=1,+\infty$ \begin{equation} \sup_{f\in W^{(r)}_p(\mathbb R)}\frac{A_{\sigma,m}(f)_p}{\|f^{(r)}\|_p}=\frac{\mathcal K_r}{\sigma^r}.\end{equation} In this paper we construct linear operators $\mathcal X_{\sigma,r,m}$ with their values in $\mathbf S_{\sigma,m}$, such that for all $p\in[1,+\infty]$ and $f\in W_p^{(r)}(\mathbb R)$ $$ \|f-\mathcal X_{\sigma,r,m}(f)\|_p\leqslant\frac{\mathcal K_r}{\sigma^r}\|f^{(r)}\|_p. $$ So we establish the possibility to achieve the upper bounds in (1) by linear methods of approximation, which was unknown before.
@article{ZNSL_2015_440_a1,
     author = {O. L. Vinogradov and A. V. Gladkaya},
     title = {A nonperiodic analogue of the {Akhiezer{\textendash}Krein{\textendash}Favard} operators},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {8--35},
     year = {2015},
     volume = {440},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a1/}
}
TY  - JOUR
AU  - O. L. Vinogradov
AU  - A. V. Gladkaya
TI  - A nonperiodic analogue of the Akhiezer–Krein–Favard operators
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 8
EP  - 35
VL  - 440
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a1/
LA  - ru
ID  - ZNSL_2015_440_a1
ER  - 
%0 Journal Article
%A O. L. Vinogradov
%A A. V. Gladkaya
%T A nonperiodic analogue of the Akhiezer–Krein–Favard operators
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 8-35
%V 440
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a1/
%G ru
%F ZNSL_2015_440_a1
O. L. Vinogradov; A. V. Gladkaya. A nonperiodic analogue of the Akhiezer–Krein–Favard operators. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 30, Tome 440 (2015), pp. 8-35. http://geodesic.mathdoc.fr/item/ZNSL_2015_440_a1/

[1] J. Favard, “Sur les meilleurs procédés d'approximation de certaines classes des fonctions par des polynomes trigonométriques”, Bull. Sci. Math., 61 (1937), 209–224, 243–256

[2] N. I. Akhiezer, M. G. Krein, “O nailuchshem priblizhenii trigonometricheskimi summami differentsiruemykh periodicheskikh funktsii”, Dokl. AN SSSR, 15:3 (1937), 107–112

[3] S. M. Nikolskii, “Priblizhenie funktsii trigonometricheskimi polinomami v srednem”, Izv. AN SSSR. Ser. mat., 10:9 (1946), 207–256

[4] M. G. Krein, “O nailuchshei approksimatsii nepreryvnykh differentsiruemykh funktsii na vsei veschestvennoi osi”, Dokl. AN SSSR, 18:9 (1938), 619–623

[5] B. Nagy, “Über gewisse Extremalfragen bei transformierten trigonometrischen Entwicklungen. II. Nichtperiodischer Fall”, Ber. Verh. sächs. Akad. Wiss. Leipzig, 91 (1939), 3–24

[6] N. I. Akhiezer, Lektsii po teorii approksimatsii, M., 1965

[7] I. J. Schoenberg, Cardinal spline interpolation, 2 ed., SIAM, Philadelphia, 1993

[8] V. M. Tikhomirov, “Nailuchshie metody priblizheniya i interpolirovaniya differentsiruemykh funktsii v prostranstve $C[-1,1]$”, Mat. sb., 80(122):2 (1969), 290–304 | MR | Zbl

[9] A. A. Ligun, “Inequalities for upper bounds of functionals”, Anal. Math., 2:1 (1976), 11–40 | DOI | MR | Zbl

[10] N. P. Korneičuk, “Exact error bound of approximation by interpolating splines on $L$-metric on the classes $W_p^r$ ($1\leqslant p\infty$) of periodic functions”, Anal. Math., 3:2 (1977), 109–117 | DOI | MR

[11] N. P. Korneichuk, Splainy v teorii priblizheniya, M., 1984 | MR

[12] N. P. Korneichuk, Tochnye konstanty v teorii priblizheniya, M., 1987 | MR

[13] A. F. Timan, Teoriya priblizheniya funktsii deistvitelnogo peremennogo, M., 1960

[14] O. L. Vinogradov, “Analog summ Akhiezera–Kreina–Favara dlya periodicheskikh splainov minimalnogo defekta”, Problemy matematicheskogo analiza, 25, 2003, 29–56 | Zbl

[15] Sun Yunshen, Li Chun, “Nailuchshee priblizhenie nekotorykh klassov gladkikh funktsii na deistvitelnoi osi splainami vysshego poryadka”, Mat. zametki, 48:4 (1990), 148–159 | MR

[16] G. G. Magaril-Ilyaev, “O nailuchshem priblizhenii splainami klassov funktsii na pryamoi”, Trudy Mat. in-ta RAN, 194, 1992, 148–159 | MR | Zbl

[17] G. G. Magaril-Ilyaev, “Srednyaya razmernost, poperechniki i optimalnoe vosstanovlenie sobolevskikh klassov funktsii na pryamoi”, Mat. sb., 182:11 (1991), 1635–1656 | MR

[18] I. J. Schoenberg, “On the remainders and the convergence of cardinal spline interpolation for almost periodic functions”, Studies in spline functions and approximation theory, Academic Press, New York, 1976, 277–303 | MR

[19] C. de Boor, I. J. Schoenberg, “Cardinal interpolation and spline functions VIII. The Budan–Fourier theorem for splines and applications”, Spline functions, Proc. Internat. Sympos. (Karlsruhe, 1975), Lecture Notes Math., 501, 1976, 1–79 | DOI | MR | Zbl

[20] K. Jetter, S. D. Riemenschneider, N. Sivakumar, “Schoenberg's exponential Euler spline curves”, Proc. Roy. Soc. Edinburgh A, 118 (1991), 21–33 | DOI | MR | Zbl

[21] B. M. Makarov, A. N. Podkorytov, Lektsii po veschestvennomu analizu, SPb, 2011