On ergodic decompositions related to the Kantorovich problem
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXVI. Representation theory, dynamical systems, combinatorial methods, Tome 437 (2015), pp. 100-130 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $X$ be a Polish space, $\mathcal P(X)$ be the set of Borel probability measures on $X$, and $T\colon X\to X$ be a homeomorphism. We prove that for the simplex $\mathrm{Dom}\subseteq\mathcal P(X)$ of all $T$-invariant measures, the Kantorovich metric on $\mathrm{Dom}$ can be reconstructed from its values on the set of extreme points. This fact is closely related to the following result: the invariant optimal transportation plan is a mixture of invariant optimal transportation plans between extreme points of the simplex. The latter result can be generalized to the case of the Kantorovich problem with additional linear constraints and the class of ergodic decomposable simplices.
@article{ZNSL_2015_437_a5,
     author = {D. A. Zaev},
     title = {On ergodic decompositions related to the {Kantorovich} problem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {100--130},
     year = {2015},
     volume = {437},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_437_a5/}
}
TY  - JOUR
AU  - D. A. Zaev
TI  - On ergodic decompositions related to the Kantorovich problem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 100
EP  - 130
VL  - 437
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_437_a5/
LA  - ru
ID  - ZNSL_2015_437_a5
ER  - 
%0 Journal Article
%A D. A. Zaev
%T On ergodic decompositions related to the Kantorovich problem
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 100-130
%V 437
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_437_a5/
%G ru
%F ZNSL_2015_437_a5
D. A. Zaev. On ergodic decompositions related to the Kantorovich problem. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXVI. Representation theory, dynamical systems, combinatorial methods, Tome 437 (2015), pp. 100-130. http://geodesic.mathdoc.fr/item/ZNSL_2015_437_a5/

[1] L. Ambrosio, N. Gigli, “A user's guide to optimal transport”, Lect. Notes Math., 2062, 2013, 1–155 | DOI | MR

[2] V. I. Bogachev, A. V. Kolesnikov, “Zadacha Monzha–Kantorovicha: dostizheniya, svyazi i perspektivy”, UMN, 67:5 (2012), 3–110 | DOI | MR | Zbl

[3] A. M. Vershik, “Metrika Kantorovicha: nachalnaya istoriya i maloizvestnye primeneniya”, Zap. nauchn. semin. POMI, 312, 2004, 69–85 | MR

[4] C. Villani, Optimal Transport, Old and New, Springer-Verlag, Berlin, 2009 | MR | Zbl

[5] M. Beiglböck, C. Griessler, An optimality principle with applications in optimal transport, 2014, arXiv: 1404.7054

[6] A. V. Kolesnikov, D. Zaev, Optimal transportation of processes with infinite Kantorovich distance. Independence and symmetry, 2013, arXiv: 1303.7255

[7] A. Moameni, Invariance properties of the Monge–Kantorovich mass transport problem, 2013, arXiv: 1311.7051

[8] D. Zaev, On the Monge–Kantorovich problem with additional linear constraints, 2014, arXiv: ; Math. Notes (to appear) 1404.4962

[9] R. Phelps, Lectures on Choquet's Theorem, Springer-Verlag, Berlin–Heidelberg, 2001 | MR | Zbl

[10] E. B. Dynkin, “Sufficient statistics and extreme points”, Ann. Probab., 6:5 (1978), 705–730 | DOI | MR | Zbl

[11] J. Kerstan, A. Wakolbinger, “Ergodic decomposition of probability laws”, Z. Wahrsch. Verw. Gebiete, 56:3 (1981), 339–414 | MR

[12] M. Colombo, S. Di Marino, “Equality between Monge and Kantorovich multimarginal problems with Coulomb Cost”, Ann. Mat. Pura Appl., 194:2 (2015), 307–320 | DOI | MR | Zbl

[13] M. I. Cortez, J. Rivera-Letelier, “Choquet simplices as spaces of invariant probability measures on post-critical sets”, Ann. Inst. H. Poincaré Anal. Non Linéare, 27:1 (2010), 95–115 | DOI | MR | Zbl

[14] A. M. Vershik, “Osnaschennye graduirovannye grafy, proektivnye predely simpleksov i ikh granitsy”, Zap. nauchn. semin. POMI, 432, 2015, 83–104 | Zbl

[15] T. Downarowicz, “The Choquet simplex of invariant measures for minimal flows”, Israel J. Math., 74:2–3 (1991), 241–256 | DOI | MR | Zbl

[16] M. Gaudard, D. Hadwin, “Sigma-algebras on spaces of probability measures”, Scand. J. Statist., 16:2 (1989), 169–175 | MR | Zbl

[17] M. Einsiedler, T. Ward, Ergodic Theory: With a View Towards Number Theory, Springer-Verlag, 2011 | MR | Zbl

[18] K. R. Parthasarathy, Probability Measures on Metric Spaces, Academic Press, 1967 | MR | Zbl

[19] O. Chodosh, Optimal transport and Ricci curvature: Wasserstein space over the interval, 2011, arXiv: 1105.2883

[20] C. D. Aliprantis, O. Burkinshaw, Positive Operators, Academic Press, New York, 1985 | MR | Zbl

[21] V. Bogachev, Measure Theory, v. 2, Springer, New York, 2007 | MR | Zbl

[22] A. M. Vershik, P. B. Zatitskii, F. V. Petrov, “Virtualnaya nepreryvnost izmerimykh funktsii mnogikh peremennykh i teoremy vlozheniya”, Funkts. anal. i pril., 47:3 (2013), 1–11 | DOI | MR | Zbl

[23] U. Rieder, “Measurable selection theorems for optimization problems”, Manuscripta Math., 24:1 (1978), 115–131 | DOI | MR | Zbl

[24] C. Himmelberg, “Measurable relations”, Fund. Math., 87:1 (1975), 53–72 | MR | Zbl