@article{ZNSL_2015_437_a5,
author = {D. A. Zaev},
title = {On ergodic decompositions related to the {Kantorovich} problem},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {100--130},
year = {2015},
volume = {437},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_437_a5/}
}
D. A. Zaev. On ergodic decompositions related to the Kantorovich problem. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXVI. Representation theory, dynamical systems, combinatorial methods, Tome 437 (2015), pp. 100-130. http://geodesic.mathdoc.fr/item/ZNSL_2015_437_a5/
[1] L. Ambrosio, N. Gigli, “A user's guide to optimal transport”, Lect. Notes Math., 2062, 2013, 1–155 | DOI | MR
[2] V. I. Bogachev, A. V. Kolesnikov, “Zadacha Monzha–Kantorovicha: dostizheniya, svyazi i perspektivy”, UMN, 67:5 (2012), 3–110 | DOI | MR | Zbl
[3] A. M. Vershik, “Metrika Kantorovicha: nachalnaya istoriya i maloizvestnye primeneniya”, Zap. nauchn. semin. POMI, 312, 2004, 69–85 | MR
[4] C. Villani, Optimal Transport, Old and New, Springer-Verlag, Berlin, 2009 | MR | Zbl
[5] M. Beiglböck, C. Griessler, An optimality principle with applications in optimal transport, 2014, arXiv: 1404.7054
[6] A. V. Kolesnikov, D. Zaev, Optimal transportation of processes with infinite Kantorovich distance. Independence and symmetry, 2013, arXiv: 1303.7255
[7] A. Moameni, Invariance properties of the Monge–Kantorovich mass transport problem, 2013, arXiv: 1311.7051
[8] D. Zaev, On the Monge–Kantorovich problem with additional linear constraints, 2014, arXiv: ; Math. Notes (to appear) 1404.4962
[9] R. Phelps, Lectures on Choquet's Theorem, Springer-Verlag, Berlin–Heidelberg, 2001 | MR | Zbl
[10] E. B. Dynkin, “Sufficient statistics and extreme points”, Ann. Probab., 6:5 (1978), 705–730 | DOI | MR | Zbl
[11] J. Kerstan, A. Wakolbinger, “Ergodic decomposition of probability laws”, Z. Wahrsch. Verw. Gebiete, 56:3 (1981), 339–414 | MR
[12] M. Colombo, S. Di Marino, “Equality between Monge and Kantorovich multimarginal problems with Coulomb Cost”, Ann. Mat. Pura Appl., 194:2 (2015), 307–320 | DOI | MR | Zbl
[13] M. I. Cortez, J. Rivera-Letelier, “Choquet simplices as spaces of invariant probability measures on post-critical sets”, Ann. Inst. H. Poincaré Anal. Non Linéare, 27:1 (2010), 95–115 | DOI | MR | Zbl
[14] A. M. Vershik, “Osnaschennye graduirovannye grafy, proektivnye predely simpleksov i ikh granitsy”, Zap. nauchn. semin. POMI, 432, 2015, 83–104 | Zbl
[15] T. Downarowicz, “The Choquet simplex of invariant measures for minimal flows”, Israel J. Math., 74:2–3 (1991), 241–256 | DOI | MR | Zbl
[16] M. Gaudard, D. Hadwin, “Sigma-algebras on spaces of probability measures”, Scand. J. Statist., 16:2 (1989), 169–175 | MR | Zbl
[17] M. Einsiedler, T. Ward, Ergodic Theory: With a View Towards Number Theory, Springer-Verlag, 2011 | MR | Zbl
[18] K. R. Parthasarathy, Probability Measures on Metric Spaces, Academic Press, 1967 | MR | Zbl
[19] O. Chodosh, Optimal transport and Ricci curvature: Wasserstein space over the interval, 2011, arXiv: 1105.2883
[20] C. D. Aliprantis, O. Burkinshaw, Positive Operators, Academic Press, New York, 1985 | MR | Zbl
[21] V. Bogachev, Measure Theory, v. 2, Springer, New York, 2007 | MR | Zbl
[22] A. M. Vershik, P. B. Zatitskii, F. V. Petrov, “Virtualnaya nepreryvnost izmerimykh funktsii mnogikh peremennykh i teoremy vlozheniya”, Funkts. anal. i pril., 47:3 (2013), 1–11 | DOI | MR | Zbl
[23] U. Rieder, “Measurable selection theorems for optimization problems”, Manuscripta Math., 24:1 (1978), 115–131 | DOI | MR | Zbl
[24] C. Himmelberg, “Measurable relations”, Fund. Math., 87:1 (1975), 53–72 | MR | Zbl