@article{ZNSL_2015_437_a2,
author = {A. Bondal and I. Zhdanovskiy},
title = {Ortogonal pairs and mutually unbiased bases},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {35--61},
year = {2015},
volume = {437},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_437_a2/}
}
A. Bondal; I. Zhdanovskiy. Ortogonal pairs and mutually unbiased bases. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXVI. Representation theory, dynamical systems, combinatorial methods, Tome 437 (2015), pp. 35-61. http://geodesic.mathdoc.fr/item/ZNSL_2015_437_a2/
[1] A. Bondal, I. Zhdanovskiy, Representation theory for system of projectors and discrete Laplace operator, Preprint IPMU13-0001, IPMU
[2] A. Bondal, I. Zhdanovskiy, Simplectic geometry of unbiasedness and critical points of a potential, arXiv: 1507.00081
[3] A. Bondal, I. Zhdanovskiy, Orthogonal pairs for Lie algebra $sl(6)$, Preprint IPMU14-0296, IPMU
[4] P. O. Boykin, M. Sitharam, P. H. Tiep, P. Wocjan, “Mutually unbiased bases and orthogonal decompositions of Lie algebras”, Quantum Inf. Comput., 7 (2007), 371–382 | MR | Zbl
[5] M. D. de Burgh, N. K. Landford, A. C. Doherty, A. Gilchrist, “Choice of measurement sets in qubit tomography”, Phys. Rev. A, 78 (2008), 052122 | DOI
[6] W. Crawley-Boevey, “Noncommutative deformations of Kleinian singularities”, Duke Math. J., 92:3 (1998), 605–635 | DOI | MR | Zbl
[7] W. Crawley-Boevey, “Geometry of the moment map for representations of quivers”, Compos. Math., 126 (2001), 257–293 | DOI | MR | Zbl
[8] T. Durt, B.-G. Englert, I. Bengtsson, K. Zyczkowski, “On mutually unbiased bases”, Int. J. Quantum Inform., 8 (2010), 535–640 | DOI | Zbl
[9] S. N. Filippov, V. I. Man'ko, “Mutually unbiased bases: tomography of spin states and the star-product scheme”, Phys. Scripta, 2011 (2011), T143
[10] W. L. Gan, V. Ginzburg, “Deformed preprojective algebras and symplectic reflection for wreath products”, J. Algebra, 283 (2005), 350–363 | DOI | MR | Zbl
[11] U. Haagerup, “Orthogonal maximal abelian *-subalgebras of the $n\times n$ matrices and cyclic $n$-roots”, Operator Algebras and Quantum Field Theory (Rome), International Press, Cambridge, MA, 1996, 296–322 | MR
[12] C. D. Hacon, J. McKernan, C. Xu, “On the birational automorphisms of varieties of general type”, Ann. Math., 177 (2013), 1077–1111 | DOI | MR | Zbl
[13] D. N. Ivanov, “An analogue of Wagner's theorem for orthogonal decompositions of the algebra of matrices $M_n(\mathbf C)$”, Uspekhi Mat. Nauk, 49:1 (225) (1994), 215–216 | MR | Zbl
[14] A. I. Kostrikin, T. A. Kostrikin, V. A. Ufnarovskii, “Orthogonal decompositions of simple Lie algebras (type $A_n$)”, Trudy Mat. Inst. Steklov, 158, 1981, 105–120 | MR | Zbl
[15] A. I. Kostrikin, I. A. Kostrikin, V. A. Ufnarovskii, “On the uniqueness of orthogonal decompositions of Lie algebras of type $A_n$ and $C_n$”, Mat. Issled., 74 (1983), 80–105 | MR | Zbl
[16] A. I. Kostrikin, P. H. Tiep, Orthogonal Decompositions and Integral Lattices, Walter de Gruyter, 1994 | MR
[17] G. Lima, L. Neves, R. Guzman, E. S. Gomez, W. A. T. Nogueira, A. Delgado, A. Vargas, C. Saavedra, “Experimental quantum tomography of photonic qudits via mutually unbiased basis”, Optics Express, 19:4 (2011), 3542–3552 | DOI
[18] M. Matolcsi, F. Szöllősi, “Towards a classification of $6\times6$ complex Hadamard matrices”, Open. Syst. Inf. Dyn., 15 (2008), 93–108 | DOI | MR | Zbl
[19] K. Nomura, “Type II matrices of size five”, Graphs Combin., 15:1 (1999), 79–92 | DOI | MR | Zbl
[20] http://qig.itp.uni-hannover.de/qiproblems/Main_Page
[21] M. B. Ruskai, “Some connections between frames, mutually unbiased bases, and POVM's in quantum information theory”, Acta Appl. Math., 108:3 (2009), 709–719 | DOI | MR | Zbl
[22] F. Szöllősi, “Complex Hadamard matrices of order 6: a four-parameter family”, J. Lond. Math. Soc., 85:3 (2012), 616–632 | DOI | MR | Zbl
[23] J. Thompson, “A conjugacy theorem for $E_8$”, J. Algebra, 38:2 (1976), 525–530 | DOI | MR | Zbl
[24] W. Tadej, K. Zyczkowski, “Defect of a unitary matrix”, Linear Algebra Appl., 429 (2008), 447–481 | DOI | MR | Zbl