Ortogonal pairs and mutually unbiased bases
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXVI. Representation theory, dynamical systems, combinatorial methods, Tome 437 (2015), pp. 35-61 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The goal of our article is a study of related mathematical and physical objects: orthogonal pairs in $\mathrm{sl}(n)$ and mutually unbiased bases in $\mathbb C^n$. An orthogonal pair in a simple Lie algebra is a pair of Cartan subalgebras that are orthogonal with respect to the Killing form. The description of orthogonal pairs in a given Lie algebra is an important step in the classification of orthogonal decompositions, i.e., decompositions of the Lie algebra into a direct sum of Cartan subalgebras pairwise orthogonal with respect to the Killing form. One of the important notions of quantum mechanics, quantum information theory, and quantum teleportation is the notion of mutually unbiased bases in the Hilbert space $\mathbb C^n$. Two orthonormal bases $\{e_i\}^n_{i=1}$, $\{f_j\}^n_{j=1}$ are mutually unbiased if and only if $|\langle e_i|f_j\rangle|^2=\frac1n$ for any $i,j=1,\dots,n$. The notions of mutually unbiased bases in $\mathbb C^n$ and orthogonal pairs in $\mathrm{sl}(n)$ are closely related. The problem of classification of orthogonal pairs in $\mathrm{sl}(n)$ and the closely related problem of classification of mutually unbiased bases in $\mathbb C^n$ are still open even for the case $n=6$. In this article, we give a sketch of our proof that there is a complex four-dimensional family of orthogonal pairs in $\mathrm{sl}(6)$. This proof requires a lot of algebraic geometry and representation theory. Further, we give an application of the result on the algebraic geometric family to the study of mutually unbiased bases. We show the existence of a real four-dimensional family of mutually unbiased bases in $\mathbb C^6$, thus solving a long-standing problem.
@article{ZNSL_2015_437_a2,
     author = {A. Bondal and I. Zhdanovskiy},
     title = {Ortogonal pairs and mutually unbiased bases},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {35--61},
     year = {2015},
     volume = {437},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_437_a2/}
}
TY  - JOUR
AU  - A. Bondal
AU  - I. Zhdanovskiy
TI  - Ortogonal pairs and mutually unbiased bases
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 35
EP  - 61
VL  - 437
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_437_a2/
LA  - en
ID  - ZNSL_2015_437_a2
ER  - 
%0 Journal Article
%A A. Bondal
%A I. Zhdanovskiy
%T Ortogonal pairs and mutually unbiased bases
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 35-61
%V 437
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_437_a2/
%G en
%F ZNSL_2015_437_a2
A. Bondal; I. Zhdanovskiy. Ortogonal pairs and mutually unbiased bases. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXVI. Representation theory, dynamical systems, combinatorial methods, Tome 437 (2015), pp. 35-61. http://geodesic.mathdoc.fr/item/ZNSL_2015_437_a2/

[1] A. Bondal, I. Zhdanovskiy, Representation theory for system of projectors and discrete Laplace operator, Preprint IPMU13-0001, IPMU

[2] A. Bondal, I. Zhdanovskiy, Simplectic geometry of unbiasedness and critical points of a potential, arXiv: 1507.00081

[3] A. Bondal, I. Zhdanovskiy, Orthogonal pairs for Lie algebra $sl(6)$, Preprint IPMU14-0296, IPMU

[4] P. O. Boykin, M. Sitharam, P. H. Tiep, P. Wocjan, “Mutually unbiased bases and orthogonal decompositions of Lie algebras”, Quantum Inf. Comput., 7 (2007), 371–382 | MR | Zbl

[5] M. D. de Burgh, N. K. Landford, A. C. Doherty, A. Gilchrist, “Choice of measurement sets in qubit tomography”, Phys. Rev. A, 78 (2008), 052122 | DOI

[6] W. Crawley-Boevey, “Noncommutative deformations of Kleinian singularities”, Duke Math. J., 92:3 (1998), 605–635 | DOI | MR | Zbl

[7] W. Crawley-Boevey, “Geometry of the moment map for representations of quivers”, Compos. Math., 126 (2001), 257–293 | DOI | MR | Zbl

[8] T. Durt, B.-G. Englert, I. Bengtsson, K. Zyczkowski, “On mutually unbiased bases”, Int. J. Quantum Inform., 8 (2010), 535–640 | DOI | Zbl

[9] S. N. Filippov, V. I. Man'ko, “Mutually unbiased bases: tomography of spin states and the star-product scheme”, Phys. Scripta, 2011 (2011), T143

[10] W. L. Gan, V. Ginzburg, “Deformed preprojective algebras and symplectic reflection for wreath products”, J. Algebra, 283 (2005), 350–363 | DOI | MR | Zbl

[11] U. Haagerup, “Orthogonal maximal abelian *-subalgebras of the $n\times n$ matrices and cyclic $n$-roots”, Operator Algebras and Quantum Field Theory (Rome), International Press, Cambridge, MA, 1996, 296–322 | MR

[12] C. D. Hacon, J. McKernan, C. Xu, “On the birational automorphisms of varieties of general type”, Ann. Math., 177 (2013), 1077–1111 | DOI | MR | Zbl

[13] D. N. Ivanov, “An analogue of Wagner's theorem for orthogonal decompositions of the algebra of matrices $M_n(\mathbf C)$”, Uspekhi Mat. Nauk, 49:1 (225) (1994), 215–216 | MR | Zbl

[14] A. I. Kostrikin, T. A. Kostrikin, V. A. Ufnarovskii, “Orthogonal decompositions of simple Lie algebras (type $A_n$)”, Trudy Mat. Inst. Steklov, 158, 1981, 105–120 | MR | Zbl

[15] A. I. Kostrikin, I. A. Kostrikin, V. A. Ufnarovskii, “On the uniqueness of orthogonal decompositions of Lie algebras of type $A_n$ and $C_n$”, Mat. Issled., 74 (1983), 80–105 | MR | Zbl

[16] A. I. Kostrikin, P. H. Tiep, Orthogonal Decompositions and Integral Lattices, Walter de Gruyter, 1994 | MR

[17] G. Lima, L. Neves, R. Guzman, E. S. Gomez, W. A. T. Nogueira, A. Delgado, A. Vargas, C. Saavedra, “Experimental quantum tomography of photonic qudits via mutually unbiased basis”, Optics Express, 19:4 (2011), 3542–3552 | DOI

[18] M. Matolcsi, F. Szöllősi, “Towards a classification of $6\times6$ complex Hadamard matrices”, Open. Syst. Inf. Dyn., 15 (2008), 93–108 | DOI | MR | Zbl

[19] K. Nomura, “Type II matrices of size five”, Graphs Combin., 15:1 (1999), 79–92 | DOI | MR | Zbl

[20] http://qig.itp.uni-hannover.de/qiproblems/Main_Page

[21] M. B. Ruskai, “Some connections between frames, mutually unbiased bases, and POVM's in quantum information theory”, Acta Appl. Math., 108:3 (2009), 709–719 | DOI | MR | Zbl

[22] F. Szöllősi, “Complex Hadamard matrices of order 6: a four-parameter family”, J. Lond. Math. Soc., 85:3 (2012), 616–632 | DOI | MR | Zbl

[23] J. Thompson, “A conjugacy theorem for $E_8$”, J. Algebra, 38:2 (1976), 525–530 | DOI | MR | Zbl

[24] W. Tadej, K. Zyczkowski, “Defect of a unitary matrix”, Linear Algebra Appl., 429 (2008), 447–481 | DOI | MR | Zbl