On a class of optimization problems with no ``effectively computable'' solution
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXV, Tome 436 (2015), pp. 122-135

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that large random structures may have nonrandom macroscopic properties. We give an example of nonrandom properties for a class of large optimization problems related to the computational problem $MAX\,FLS^=$ of calculating the maximum number of consistent equations in a given overdetermined system of linear equations. For this class we establish the following. There is no “efficiently computable” optimal strategy. When the size of a random instance of the optimization problem goes to infinity, the probability that the uniform mixed strategy is $\varepsilon$-optimal goes to one. Moreover, there is no “efficiently computable” strategy that is substantially better for each instance of the optimization problem.
@article{ZNSL_2015_436_a6,
     author = {M. R. Gavrilovich and V. L. Kreps},
     title = {On a class of optimization problems with no ``effectively computable'' solution},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {122--135},
     publisher = {mathdoc},
     volume = {436},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a6/}
}
TY  - JOUR
AU  - M. R. Gavrilovich
AU  - V. L. Kreps
TI  - On a class of optimization problems with no ``effectively computable'' solution
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 122
EP  - 135
VL  - 436
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a6/
LA  - ru
ID  - ZNSL_2015_436_a6
ER  - 
%0 Journal Article
%A M. R. Gavrilovich
%A V. L. Kreps
%T On a class of optimization problems with no ``effectively computable'' solution
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 122-135
%V 436
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a6/
%G ru
%F ZNSL_2015_436_a6
M. R. Gavrilovich; V. L. Kreps. On a class of optimization problems with no ``effectively computable'' solution. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXV, Tome 436 (2015), pp. 122-135. http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a6/