On Schur $2$-groups
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 28, Tome 435 (2015), pp. 113-162 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A finite group $G$ is called a Schur group, if any Schur ring over $G$ is the transitivity module of a point stabilizer in a subgroup of $\operatorname{Sym}(G)$ that contains all right translations. We complete a classification of abelian Schur $2$-groups by proving that the group $\mathbb Z_2\times\mathbb Z_{2^n}$ is Schur. We also prove that any non-abelian Schur $2$-group of order larger than $32$ is dihedral (the Schur $2$-groups of smaller orders are known). Finally, in the dihedral case, we study Schur rings of rank at most $5$, and show that the unique obstacle here is a hypothetical S-ring of rank $5$ associated with a divisible difference set.
@article{ZNSL_2015_435_a6,
     author = {M. Muzychuk and I. Ponomarenko},
     title = {On {Schur} $2$-groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {113--162},
     year = {2015},
     volume = {435},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_435_a6/}
}
TY  - JOUR
AU  - M. Muzychuk
AU  - I. Ponomarenko
TI  - On Schur $2$-groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 113
EP  - 162
VL  - 435
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_435_a6/
LA  - ru
ID  - ZNSL_2015_435_a6
ER  - 
%0 Journal Article
%A M. Muzychuk
%A I. Ponomarenko
%T On Schur $2$-groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 113-162
%V 435
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_435_a6/
%G ru
%F ZNSL_2015_435_a6
M. Muzychuk; I. Ponomarenko. On Schur $2$-groups. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 28, Tome 435 (2015), pp. 113-162. http://geodesic.mathdoc.fr/item/ZNSL_2015_435_a6/

[1] S. Evdokimov, I. Ponomarenko, “Kharakterizatsiya tsiklotomicheskikh skhem i normalnye koltsa Shura nad tsiklicheskoi gruppoi”, Algebra i Analiz, 14:2 (2003), 11–55 | MR | Zbl

[2] S. Evdokimov, I. Ponomarenko, “Shurovost $\mathrm S$-kolets nad tsiklicheskoi gruppoi i obobschennoe spletenie grupp perestanovok”, Algebra i Analiz, 24:3 (2012), 84–127 | MR | Zbl

[3] L. A. Kaluzhnin, M. Kh. Klin, “O nekotorykh chislovykh invariantakh grupp podstanovok”, Latv. matem. ezhegodnik, 18 (1976), 81–99 | Zbl

[4] M. Kh. Klin, “Ob aksiomatike kletochnykh kolets”, Issledovaniya po algebraicheskoi teorii kombinatornykh ob'ektov, VNIISI, M., 1985, 6–32 | MR

[5] M. Muzychuk, V-koltsa grupp podstanovok s invariantnoi metrikoi, Diss. k.f.-m.n., Kiev, 1987

[6] R. A. Bailey, P. J. Cameron, “Crested products of association schemes”, J. London Math. Soc., 72:1 (2005), 1–24 | DOI | MR | Zbl

[7] T. Beth, D. Jungnickel, H. Lenz, Design Theory, 2nd edition, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[8] P. J. Cameron, “On groups with several doubly-transitive permutation representations”, Math. Z., 128 (1972), 1–14 | DOI | MR | Zbl

[9] J. A. Davis, K. Smith, “A construction of difference sets in high exponent 2-groups using representation theory”, J. Algebraic Combin., 3 (1994), 137–151 | DOI | MR | Zbl

[10] S. Evdokimov, I. Ponomarenko, “A new look at the Burnside–Schur theorem”, Bull. London Math. Soc., 37 (2005), 535–546 | DOI | MR | Zbl

[11] S. Evdokimov, I. Ponomarenko, “Permutation group approach to association schemes”, Europ. J. Combin., 30:6 (2009), 1456–1476 | DOI | MR | Zbl

[12] S. Evdokimov, I. Ponomarenko, “Schur rings over a product of Galois rings”, Beitr. Algebra Geom., 55:1 (2014), 105–138 | DOI | MR | Zbl

[13] S. Evdokimov, I. Kovács, I. Ponomarenko, “Characterization of cyclic Schur groups”, Algebra Analysis, 25:5 (2013), 61–85 | MR | Zbl

[14] S. Evdokimov, I. Kovács, I. Ponomarenko, On schurity of finite abelian groups, 2013, 20 pp., arXiv: ; Commun. Algebra, 44:1 (2016), 101–117 1309.0989[math.GR] | MR

[15] M. Hirasaka, M. Muzychuk, “Association schemes generated by a non-symmetric relation of valency 2”, Discrete Math., 244 (2002), 109–135 | DOI | MR | Zbl

[16] G. A. Jones, “Cyclic regular subgroups of primitive permutation groups”, J. Group Theory, 5 (2002), 403–407 | DOI | MR | Zbl

[17] R. Kochendörffer, “Untersuchungen über eine Vermutung von W. Burnside”, Schr. Math. Semin. u. Inst. Angew. Math. Univ. Berlin, 3 (1937), 155–180 | Zbl

[18] I. Kovács, D. Marus̆ic̆, M. Muzychuk, “On dihedrants admitting arc-regular group actions”, Journal Algebraic Combin., 35 (2011), 409–426 | DOI | MR

[19] K. H. Leung, S. L. Ma, “The structure of Schur rings over cyclic groups”, J. Pure Appl. Algebra, 66 (1990), 287–302 | DOI | MR | Zbl

[20] K. H. Leung, S. H. Man, “On Schur Rings over Cyclic Groups”, Israel J. Math., 106 (1998), 251–267 | DOI | MR | Zbl

[21] M. Muzychuk, I. Ponomarenko, “Schur rings”, European J. Combin., 30:6 (2009), 1526–1539 | DOI | MR | Zbl

[22] M. Muzychuk, I. Ponomarenko, “On quasi-thin association schemes”, J. Algebra, 351 (2012), 467–489 | DOI | MR | Zbl

[23] Ch. Pech, S. Reichard, M. Ziv-Av, The COCO share package for GAP, https://github.com/MatanZ/coco-ii

[24] I. N. Ponomarenko, “Bases of Schurian antisymmetric coherent configurations and an isomorphism test for Schurian tournaments”, J. Math. Sci. (N.Y.), 192:3 (2013), 316–338 | DOI | MR | Zbl

[25] I. Ponomarenko, A. Vasil'ev, “On non-abelian Schur groups”, J. Algebra Appl., 13:8 (2014), 1450055, 22 pp. | DOI | MR | Zbl

[26] R. Pöschel, “Untersuchungen von S-Ringen, insbesondere im Gruppenring von $p$-Gruppen”, Math. Nachr., 60 (1974), 1–27 | DOI | MR | Zbl

[27] A. Pott, Finite geometry and character theory, Springer-Verlag, Berlin, 1995 | MR | Zbl

[28] I. Schur, “Zur Theorie der einfach transitiven Permutationgruppen”, S.-B. Preus Akad. Wiss. phys.-math. Kl., 18–20 (1933), 598–623 | Zbl

[29] H. Wielandt, “Zur Theorie der einfach transitiven Permutationsgruppen. II”, Math. Zeitschrift, 52 (1950), 384–393 | DOI | MR

[30] H. Wielandt, Finite permutation groups, Academic Press, New York–London, 1964 | MR | Zbl