@article{ZNSL_2015_432_a7,
author = {V. Gerdt and A. Khvedelidze and Y. Palii},
title = {Constructing $\mathrm{SU(2)\times U(1)}$ orbit space for qutrit mixed states},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {111--127},
year = {2015},
volume = {432},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a7/}
}
TY - JOUR
AU - V. Gerdt
AU - A. Khvedelidze
AU - Y. Palii
TI - Constructing $\mathrm{SU(2)\times U(1)}$ orbit space for qutrit mixed states
JO - Zapiski Nauchnykh Seminarov POMI
PY - 2015
SP - 111
EP - 127
VL - 432
UR - http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a7/
LA - en
ID - ZNSL_2015_432_a7
ER -
V. Gerdt; A. Khvedelidze; Y. Palii. Constructing $\mathrm{SU(2)\times U(1)}$ orbit space for qutrit mixed states. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Tome 432 (2015), pp. 111-127. http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a7/
[1] C. Procesi, G. Schwarz, “The geometry of orbit spaces and gauge symmetry breaking in supersymmetric gauge theories”, Phys. Lett. B, 161 (1985), 117–121 | DOI | MR
[2] C. Procesi, G. Schwarz, “Inequalities defining orbit spaces”, Invent. Math., 81 (1985), 539–554 | DOI | MR | Zbl
[3] V. Gerdt, A. Khvedelidze, Yu. Palii, “Describing the orbit space of the global unitary actions for mixed qudit states”, J. Math. Sci., 200:6 (2014), 682–689 ; arXiv: 1311.4649[quant-ph] | DOI | Zbl
[4] E. Vinberg, V. Popov, “Theory of invariants”, Itogi Nauki i Techniki, Ser. Sovremennie problemi matematiki. Fundam. napravl., 55, 1989, 137–309 (in Rissian) | MR | Zbl
[5] M. Forger, “Invariant polynomials and Molien functions”, J. Math. Phys., 39:2 (1998), 1107–1141 | DOI | MR | Zbl
[6] C. Procesi, An approach to Lie Theory through Invariants and Representations, Springer, 2007 | MR
[7] D. Cox, J. Little, D. O'Shea, Ideals, Varieties, and Algorithms, Third Ed., Springer, 2007 | MR | Zbl
[8] L. Michel, L. A. Radicati, “The geometry of the octet”, Ann. Inst. Henri Poincare Section A, 18 (1973), 185–214 | MR | Zbl
[9] V. Gerdt, A. Khvedelidze, Yu. Palii, “On the ring of local polynomial invariants for a pair of entangled qubits”, J. Math. Sci., 168:3 (2010), 368–378 ; arXiv: 1007.0968[quant-ph] | DOI | MR | Zbl