Constructing $\mathrm{SU(2)\times U(1)}$ orbit space for qutrit mixed states
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Tome 432 (2015), pp. 111-127
Voir la notice de l'article provenant de la source Math-Net.Ru
The orbit space $\mathfrak P(\mathbb R^8)/\mathrm G$ of the group $$ \mathrm{G:=SU(2)\times U(1)\subset U(3)} $$ acting adjointly on the state space $\mathfrak P(\mathbb R^8)$ of a $3$-level quantum system is discussed. The semi-algebraic structure of $\mathfrak P(\mathbb R^8)/\mathrm G$ is determined within the Procesi–Schwarz method. Using the integrity basis for the ring of $\mathrm G$-invariant polynomials $\mathbb R[\mathfrak P(\mathbb R^8)]^\mathrm G$, the set of constraints on the Casimir invariants of the group $\mathrm U(3)$ coming from the positivity requirement for Procesi–Schwarz gradient matrix, $\mathrm{Grad}(z)\geqslant0$, is analyzed in detail.
@article{ZNSL_2015_432_a7,
author = {V. Gerdt and A. Khvedelidze and Y. Palii},
title = {Constructing $\mathrm{SU(2)\times U(1)}$ orbit space for qutrit mixed states},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {111--127},
publisher = {mathdoc},
volume = {432},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a7/}
}
TY - JOUR
AU - V. Gerdt
AU - A. Khvedelidze
AU - Y. Palii
TI - Constructing $\mathrm{SU(2)\times U(1)}$ orbit space for qutrit mixed states
JO - Zapiski Nauchnykh Seminarov POMI
PY - 2015
SP - 111
EP - 127
VL - 432
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a7/
LA - en
ID - ZNSL_2015_432_a7
ER -
V. Gerdt; A. Khvedelidze; Y. Palii. Constructing $\mathrm{SU(2)\times U(1)}$ orbit space for qutrit mixed states. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Tome 432 (2015), pp. 111-127. http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a7/