Shadowing in linear skew products
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Tome 432 (2015), pp. 261-273 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a linear skew product with the full shift in the base and nonzero Lyapunov exponent in the fiber. We provide a sharp estimate for the precision of shadowing for a typical pseudotrajectory of finite length. This result indicates that the high-dimensional analog of the Hammel–Yorke–Grebogi conjecture concerning the interval of shadowability for a typical pseudotrajectory is not correct. The main technique is the reduction of the shadowing problem to the ruin problem for a simple random walk.
@article{ZNSL_2015_432_a13,
     author = {S. Tikhomirov},
     title = {Shadowing in linear skew products},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {261--273},
     year = {2015},
     volume = {432},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a13/}
}
TY  - JOUR
AU  - S. Tikhomirov
TI  - Shadowing in linear skew products
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 261
EP  - 273
VL  - 432
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a13/
LA  - en
ID  - ZNSL_2015_432_a13
ER  - 
%0 Journal Article
%A S. Tikhomirov
%T Shadowing in linear skew products
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 261-273
%V 432
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a13/
%G en
%F ZNSL_2015_432_a13
S. Tikhomirov. Shadowing in linear skew products. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Tome 432 (2015), pp. 261-273. http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a13/

[1] S. M. Hammel, J. A. Yorke, C. Grebogi, “Numerical orbits of chaotic dynamical processes represent true orbits”, J. Complexity, 3 (1987), 136–145 | MR | Zbl

[2] S. M. Hammel, J. A. Yorke, C. Grebogi, “Numerical orbits of chaotic processes represent true orbits”, Bull. Amer. Math. Soc., 19 (1988), 465–469 | DOI | MR | Zbl

[3] K. Palmer, Shadowing in Dynamical Systems. Theory and Applications, Kluwer, Dordrecht, 2000 | MR | Zbl

[4] S. Yu. Pilyugin, Shadowing in Dynamical Systems, Lecture Notes Math., 1706, Springer, Berlin, 1999 | MR | Zbl

[5] S. Yu. Pilyugin, “Theory of pseudo-orbit shadowing in dynamical systems”, Diff. Eqs., 47 (2011), 1929–1938 | DOI | MR | Zbl

[6] D. V. Anosov, “On a class of invariant sets of smooth dynamical systems”, Proceedings of the 5th International Conference on Nonlinear Oscillations, v. 2, 1970, 39–45 | Zbl

[7] R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes Math., 470, Springer, Berlin, 1975 | MR | Zbl

[8] C. Robinson, “Stability theorems and hyperbolicity in dynamical systems”, Rocky Mount. J. Math., 7 (1977), 425–437 | DOI | MR | Zbl

[9] K. Sawada, “Extended $f$-orbits are approximated by orbits”, Nagoya Math. J., 79 (1980), 33–45 | MR | Zbl

[10] S. Yu. Pilyugin, “Variational shadowing”, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 733–737 | DOI | MR | Zbl

[11] K. Sakai, “Pseudo-orbit tracing property and strong transversality of diffeomorphisms of closed manifolds”, Osaka J. Math., 31 (1994), 373–386 | MR | Zbl

[12] S. Yu. Pilyugin, A. A. Rodionova, K. Sakai, “Orbital and weak shadowing properties”, Discrete Contin. Dyn. Syst., 9 (2003), 287–308 | DOI | MR | Zbl

[13] F. Abdenur, L. J. Diaz, “Pseudo-orbit shadowing in the $C^1$ topology”, Discrete Contin. Dyn. Syst., 7 (2003), 223–245 | MR

[14] S. Yu. Pilyugin, S. B. Tikhomirov, “Lipschitz shadowing implies structural stability”, Nonlinearity, 23 (2010), 2509–2515 | DOI | MR | Zbl

[15] A. V. Osipov, S. Yu. Pilyugin, S. B. Tikhomirov, “Periodic shadowing and $\Omega$-stability”, Regul. Chaotic Dyn., 15 (2010), 404–417 | DOI | MR | Zbl

[16] S. Tikhomirov, “Holder shadowing on finite intervals”, Ergodic Theory Dynam. Systems (to appear)

[17] A. S. Gorodetskii, Yu. S. Ilyashenko, “Some properties of skew products over a horseshoe and a solenoid”, Proc. Steklov Inst. Math., 231, 2000, 90–112 | MR | Zbl

[18] A. S. Gorodetskii, “Regularity of central leaves of partially hyperbolic sets and applications”, Izv. Math., 70:6 (2006), 1093–1116 | DOI | MR | Zbl

[19] A. Koropecki, E. Pujals, “Consequences of the shadowing property in low dimensions”, Ergodic Theory Dynam. Systems, 34 (2014), 1273–1309 | DOI | MR | Zbl

[20] G.-C. Yuan, J. A. Yorke, “An open set of maps for which every point is absolutely nonshadowable”, Proc. Amer. Math. Soc., 128 (2000), 909–918 | DOI | MR | Zbl

[21] W. Feller, An Introduction to Probability Theory and Its Applications, v. II, John Wiley Sons, New York–London–Sydney, 1971 | MR | Zbl

[22] S. R. S. Varadhan, Large Deviations and Applications, SIAM, Philadelphia, 1984 | MR