@article{ZNSL_2015_432_a13,
author = {S. Tikhomirov},
title = {Shadowing in linear skew products},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {261--273},
year = {2015},
volume = {432},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a13/}
}
S. Tikhomirov. Shadowing in linear skew products. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Tome 432 (2015), pp. 261-273. http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a13/
[1] S. M. Hammel, J. A. Yorke, C. Grebogi, “Numerical orbits of chaotic dynamical processes represent true orbits”, J. Complexity, 3 (1987), 136–145 | MR | Zbl
[2] S. M. Hammel, J. A. Yorke, C. Grebogi, “Numerical orbits of chaotic processes represent true orbits”, Bull. Amer. Math. Soc., 19 (1988), 465–469 | DOI | MR | Zbl
[3] K. Palmer, Shadowing in Dynamical Systems. Theory and Applications, Kluwer, Dordrecht, 2000 | MR | Zbl
[4] S. Yu. Pilyugin, Shadowing in Dynamical Systems, Lecture Notes Math., 1706, Springer, Berlin, 1999 | MR | Zbl
[5] S. Yu. Pilyugin, “Theory of pseudo-orbit shadowing in dynamical systems”, Diff. Eqs., 47 (2011), 1929–1938 | DOI | MR | Zbl
[6] D. V. Anosov, “On a class of invariant sets of smooth dynamical systems”, Proceedings of the 5th International Conference on Nonlinear Oscillations, v. 2, 1970, 39–45 | Zbl
[7] R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes Math., 470, Springer, Berlin, 1975 | MR | Zbl
[8] C. Robinson, “Stability theorems and hyperbolicity in dynamical systems”, Rocky Mount. J. Math., 7 (1977), 425–437 | DOI | MR | Zbl
[9] K. Sawada, “Extended $f$-orbits are approximated by orbits”, Nagoya Math. J., 79 (1980), 33–45 | MR | Zbl
[10] S. Yu. Pilyugin, “Variational shadowing”, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 733–737 | DOI | MR | Zbl
[11] K. Sakai, “Pseudo-orbit tracing property and strong transversality of diffeomorphisms of closed manifolds”, Osaka J. Math., 31 (1994), 373–386 | MR | Zbl
[12] S. Yu. Pilyugin, A. A. Rodionova, K. Sakai, “Orbital and weak shadowing properties”, Discrete Contin. Dyn. Syst., 9 (2003), 287–308 | DOI | MR | Zbl
[13] F. Abdenur, L. J. Diaz, “Pseudo-orbit shadowing in the $C^1$ topology”, Discrete Contin. Dyn. Syst., 7 (2003), 223–245 | MR
[14] S. Yu. Pilyugin, S. B. Tikhomirov, “Lipschitz shadowing implies structural stability”, Nonlinearity, 23 (2010), 2509–2515 | DOI | MR | Zbl
[15] A. V. Osipov, S. Yu. Pilyugin, S. B. Tikhomirov, “Periodic shadowing and $\Omega$-stability”, Regul. Chaotic Dyn., 15 (2010), 404–417 | DOI | MR | Zbl
[16] S. Tikhomirov, “Holder shadowing on finite intervals”, Ergodic Theory Dynam. Systems (to appear)
[17] A. S. Gorodetskii, Yu. S. Ilyashenko, “Some properties of skew products over a horseshoe and a solenoid”, Proc. Steklov Inst. Math., 231, 2000, 90–112 | MR | Zbl
[18] A. S. Gorodetskii, “Regularity of central leaves of partially hyperbolic sets and applications”, Izv. Math., 70:6 (2006), 1093–1116 | DOI | MR | Zbl
[19] A. Koropecki, E. Pujals, “Consequences of the shadowing property in low dimensions”, Ergodic Theory Dynam. Systems, 34 (2014), 1273–1309 | DOI | MR | Zbl
[20] G.-C. Yuan, J. A. Yorke, “An open set of maps for which every point is absolutely nonshadowable”, Proc. Amer. Math. Soc., 128 (2000), 909–918 | DOI | MR | Zbl
[21] W. Feller, An Introduction to Probability Theory and Its Applications, v. II, John Wiley Sons, New York–London–Sydney, 1971 | MR | Zbl
[22] S. R. S. Varadhan, Large Deviations and Applications, SIAM, Philadelphia, 1984 | MR