Shadowing in linear skew products
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Tome 432 (2015), pp. 261-273
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a linear skew product with the full shift in the base and nonzero Lyapunov exponent in the fiber. We provide a sharp estimate for the precision of shadowing for a typical pseudotrajectory of finite length. This result indicates that the high-dimensional analog of the Hammel–Yorke–Grebogi conjecture concerning the interval of shadowability for a typical pseudotrajectory is not correct. The main technique is the reduction of the shadowing problem to the ruin problem for a simple random walk.
@article{ZNSL_2015_432_a13,
author = {S. Tikhomirov},
title = {Shadowing in linear skew products},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {261--273},
publisher = {mathdoc},
volume = {432},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a13/}
}
S. Tikhomirov. Shadowing in linear skew products. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Tome 432 (2015), pp. 261-273. http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a13/