@article{ZNSL_2014_427_a4,
author = {G. V. Nenashev},
title = {On {Heawood-type} problem for maps with tangencies},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {74--88},
year = {2014},
volume = {427},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_427_a4/}
}
G. V. Nenashev. On Heawood-type problem for maps with tangencies. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part VII, Tome 427 (2014), pp. 74-88. http://geodesic.mathdoc.fr/item/ZNSL_2014_427_a4/
[1] K. Appel, W. Haken, Every Planar Map Is Four Colorable, Contemp. Math., 98, A.M.S., 1989 | DOI | MR | Zbl
[2] K. Appel, W. Haken, “Every map is four colourable, Part I: Discharging”, Illinois Journal of Mathematics, 21 (1977), 429–490 | MR | Zbl
[3] K. Appel, W. Haken, “Every map is four colourable, Part II: Reducibility”, Illinois Journal of Mathematics, 21 (1977), 491–567 | MR | Zbl
[4] O. V. Borodin, “Solution of Ringel's problems on vertex-face coloring of plane graphs and coloring of 1-planar graphs”, Met. Diskret. Anal., 41 (1984), 12–26 | MR | Zbl
[5] P. J. Heawood, “Map colour theorem”, Quart. J. Math., 24 (1890), 332–338 | Zbl
[6] G. V. Nenashev, “Otsenka khromaticheskogo chisla pochti planarnogo grafa”, Zap. nauchn. semin. POMI, 406, 2012, 95–106 | MR
[7] G. Ringel, J. W. T. Youngs, “Solution of the Heawood map-coloring problem”, Proc. Nat. Acad. Sci. USA, 60:2 (1968), 438–445 | DOI | MR | Zbl
[8] N. Robertson, D. Sanders, P. Seymour, R. Thomas, “The Four-Colour Theorem”, J. Comb.Theory, Series B, 70 (1997), 2–44 | DOI | MR | Zbl