On Heawood-type problem for maps with tangencies
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part VII, Tome 427 (2014), pp. 74-88

Voir la notice de l'article provenant de la source Math-Net.Ru

The class of maps on a surface of genus $g>0$ such that each point belongs to at most $k\geq3$ regions is studied. We study chromatic numbers of such maps (regions having a common point must have distinct colors) in dependence on $g$ and $k$. In general case, upper bounds on these chromatic numbers are proved. In case $k=4$, it is proved that the problem described above is equivalent to the problem of finding the maximal chromatic number for analogues of $1$-planar graphs on a surface of genus $g$. In this case a more strong bound than in general case is obtained and a method of constructing examples which confirm accuracy of our bound is presented. An upper bound on maximal chromatic number for analogues of $2$-planar graphs on a surface of genus $g$ is proved.
@article{ZNSL_2014_427_a4,
     author = {G. V. Nenashev},
     title = {On {Heawood-type}  problem for maps with tangencies},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {74--88},
     publisher = {mathdoc},
     volume = {427},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_427_a4/}
}
TY  - JOUR
AU  - G. V. Nenashev
TI  - On Heawood-type  problem for maps with tangencies
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 74
EP  - 88
VL  - 427
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_427_a4/
LA  - ru
ID  - ZNSL_2014_427_a4
ER  - 
%0 Journal Article
%A G. V. Nenashev
%T On Heawood-type  problem for maps with tangencies
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 74-88
%V 427
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_427_a4/
%G ru
%F ZNSL_2014_427_a4
G. V. Nenashev. On Heawood-type  problem for maps with tangencies. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part VII, Tome 427 (2014), pp. 74-88. http://geodesic.mathdoc.fr/item/ZNSL_2014_427_a4/