@article{ZNSL_2014_421_a5,
author = {V. P. Gerdt and A. M. Khvedelidze and Yu. G. Palii},
title = {Describing orbit space of global unitary actions for mixed qudit states},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {68--80},
year = {2014},
volume = {421},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a5/}
}
TY - JOUR AU - V. P. Gerdt AU - A. M. Khvedelidze AU - Yu. G. Palii TI - Describing orbit space of global unitary actions for mixed qudit states JO - Zapiski Nauchnykh Seminarov POMI PY - 2014 SP - 68 EP - 80 VL - 421 UR - http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a5/ LA - en ID - ZNSL_2014_421_a5 ER -
V. P. Gerdt; A. M. Khvedelidze; Yu. G. Palii. Describing orbit space of global unitary actions for mixed qudit states. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIII, Tome 421 (2014), pp. 68-80. http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a5/
[1] C. Procesi, G. Schwarz, “The geometry of orbit spaces and gauge symmetry breaking in supersymmetric gauge theories”, Phys. Lett. B, 161 (1985), 117–121 | DOI | MR
[2] C. Procesi, G. Schwarz, “Inequalities defining orbit spaces”, Invent. Math., 81 (1985), 539–554 | DOI | MR | Zbl
[3] D. Cox, J. Little, D. O'Shea, Ideals, Varieties, and Algorithms, Third Edition, Springer, 2007 | MR | Zbl
[4] D. P. Zelobenko, Compact Lie groups and their representation, Translation of Mathematical Monographs, 40, AMS, 1978 | MR
[5] L. Michel, L. A. Radicati, “The geometry of the octet”, Ann. Inst. Henri Poincaré Sec. A, 18 (1973), 185–214 | MR | Zbl
[6] M. Adelman, J. V. Corbett, C. A. Hurst, “The geometry of state space”, Found. Phys., 23 (1993), 211–223 | DOI | MR
[7] M. Kus, K. Zyczkowski, “Geometry of entangled states”, Phys. Rev. A, 63 (2008), 032307 | DOI | MR
[8] L. J. Boya, K. Dixit, “Geometry of density matrix states”, Phys. Rev. A, 78 (2008), 042108 | DOI | MR | Zbl
[9] V. Gerdt, A. Khvedelidze, Yu. Palii, “On the ring of local polynomial invariants for a pair of entangled qubits”, Zap. Nauchn. Semin. POMI, 373, 2009, 104–123 | MR