Describing orbit space of global unitary actions for mixed qudit states
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIII, Tome 421 (2014), pp. 68-80
Voir la notice de l'article provenant de la source Math-Net.Ru
The unitary $\mathrm U(d)$-equivalence relation between elements of the space $\mathfrak P_+$ of mixed states of $d$-dimensional quantum system defines the orbit space $\mathfrak P_+/\mathrm U(d)$ and provides its description in terms the ring $\mathbb R[\mathfrak P_+]^{\mathrm U(d)}$ of $\mathrm U(d)$-invariant polynomials. We prove that the semi-algebraic structure of $\mathfrak P_+/\mathrm U(d)$ is determined completely by two basic properties of density matrices, their semi-positivity and Hermicity. Particularly, it is shown that the Processi–Schwarz inequalities in elements of integrity basis for $\mathbb R[\mathfrak P_+]^{\mathrm U(d)}$ defining the orbit space, are identically satisfied for all elements of $\mathfrak P_+$.
@article{ZNSL_2014_421_a5,
author = {V. P. Gerdt and A. M. Khvedelidze and Yu. G. Palii},
title = {Describing orbit space of global unitary actions for mixed qudit states},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {68--80},
publisher = {mathdoc},
volume = {421},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a5/}
}
TY - JOUR AU - V. P. Gerdt AU - A. M. Khvedelidze AU - Yu. G. Palii TI - Describing orbit space of global unitary actions for mixed qudit states JO - Zapiski Nauchnykh Seminarov POMI PY - 2014 SP - 68 EP - 80 VL - 421 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a5/ LA - en ID - ZNSL_2014_421_a5 ER -
V. P. Gerdt; A. M. Khvedelidze; Yu. G. Palii. Describing orbit space of global unitary actions for mixed qudit states. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIII, Tome 421 (2014), pp. 68-80. http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a5/