Describing orbit space of global unitary actions for mixed qudit states
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIII, Tome 421 (2014), pp. 68-80

Voir la notice de l'article provenant de la source Math-Net.Ru

The unitary $\mathrm U(d)$-equivalence relation between elements of the space $\mathfrak P_+$ of mixed states of $d$-dimensional quantum system defines the orbit space $\mathfrak P_+/\mathrm U(d)$ and provides its description in terms the ring $\mathbb R[\mathfrak P_+]^{\mathrm U(d)}$ of $\mathrm U(d)$-invariant polynomials. We prove that the semi-algebraic structure of $\mathfrak P_+/\mathrm U(d)$ is determined completely by two basic properties of density matrices, their semi-positivity and Hermicity. Particularly, it is shown that the Processi–Schwarz inequalities in elements of integrity basis for $\mathbb R[\mathfrak P_+]^{\mathrm U(d)}$ defining the orbit space, are identically satisfied for all elements of $\mathfrak P_+$.
@article{ZNSL_2014_421_a5,
     author = {V. P. Gerdt and A. M. Khvedelidze and Yu. G. Palii},
     title = {Describing orbit space of global unitary actions for mixed qudit states},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {68--80},
     publisher = {mathdoc},
     volume = {421},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a5/}
}
TY  - JOUR
AU  - V. P. Gerdt
AU  - A. M. Khvedelidze
AU  - Yu. G. Palii
TI  - Describing orbit space of global unitary actions for mixed qudit states
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 68
EP  - 80
VL  - 421
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a5/
LA  - en
ID  - ZNSL_2014_421_a5
ER  - 
%0 Journal Article
%A V. P. Gerdt
%A A. M. Khvedelidze
%A Yu. G. Palii
%T Describing orbit space of global unitary actions for mixed qudit states
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 68-80
%V 421
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a5/
%G en
%F ZNSL_2014_421_a5
V. P. Gerdt; A. M. Khvedelidze; Yu. G. Palii. Describing orbit space of global unitary actions for mixed qudit states. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIII, Tome 421 (2014), pp. 68-80. http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a5/