Describing orbit space of global unitary actions for mixed qudit states
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIII, Tome 421 (2014), pp. 68-80 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The unitary $\mathrm U(d)$-equivalence relation between elements of the space $\mathfrak P_+$ of mixed states of $d$-dimensional quantum system defines the orbit space $\mathfrak P_+/\mathrm U(d)$ and provides its description in terms the ring $\mathbb R[\mathfrak P_+]^{\mathrm U(d)}$ of $\mathrm U(d)$-invariant polynomials. We prove that the semi-algebraic structure of $\mathfrak P_+/\mathrm U(d)$ is determined completely by two basic properties of density matrices, their semi-positivity and Hermicity. Particularly, it is shown that the Processi–Schwarz inequalities in elements of integrity basis for $\mathbb R[\mathfrak P_+]^{\mathrm U(d)}$ defining the orbit space, are identically satisfied for all elements of $\mathfrak P_+$.
@article{ZNSL_2014_421_a5,
     author = {V. P. Gerdt and A. M. Khvedelidze and Yu. G. Palii},
     title = {Describing orbit space of global unitary actions for mixed qudit states},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {68--80},
     year = {2014},
     volume = {421},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a5/}
}
TY  - JOUR
AU  - V. P. Gerdt
AU  - A. M. Khvedelidze
AU  - Yu. G. Palii
TI  - Describing orbit space of global unitary actions for mixed qudit states
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 68
EP  - 80
VL  - 421
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a5/
LA  - en
ID  - ZNSL_2014_421_a5
ER  - 
%0 Journal Article
%A V. P. Gerdt
%A A. M. Khvedelidze
%A Yu. G. Palii
%T Describing orbit space of global unitary actions for mixed qudit states
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 68-80
%V 421
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a5/
%G en
%F ZNSL_2014_421_a5
V. P. Gerdt; A. M. Khvedelidze; Yu. G. Palii. Describing orbit space of global unitary actions for mixed qudit states. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIII, Tome 421 (2014), pp. 68-80. http://geodesic.mathdoc.fr/item/ZNSL_2014_421_a5/

[1] C. Procesi, G. Schwarz, “The geometry of orbit spaces and gauge symmetry breaking in supersymmetric gauge theories”, Phys. Lett. B, 161 (1985), 117–121 | DOI | MR

[2] C. Procesi, G. Schwarz, “Inequalities defining orbit spaces”, Invent. Math., 81 (1985), 539–554 | DOI | MR | Zbl

[3] D. Cox, J. Little, D. O'Shea, Ideals, Varieties, and Algorithms, Third Edition, Springer, 2007 | MR | Zbl

[4] D. P. Zelobenko, Compact Lie groups and their representation, Translation of Mathematical Monographs, 40, AMS, 1978 | MR

[5] L. Michel, L. A. Radicati, “The geometry of the octet”, Ann. Inst. Henri Poincaré Sec. A, 18 (1973), 185–214 | MR | Zbl

[6] M. Adelman, J. V. Corbett, C. A. Hurst, “The geometry of state space”, Found. Phys., 23 (1993), 211–223 | DOI | MR

[7] M. Kus, K. Zyczkowski, “Geometry of entangled states”, Phys. Rev. A, 63 (2008), 032307 | DOI | MR

[8] L. J. Boya, K. Dixit, “Geometry of density matrix states”, Phys. Rev. A, 78 (2008), 042108 | DOI | MR | Zbl

[9] V. Gerdt, A. Khvedelidze, Yu. Palii, “On the ring of local polynomial invariants for a pair of entangled qubits”, Zap. Nauchn. Semin. POMI, 373, 2009, 104–123 | MR