Cyclic behavior of the maximum of sums of independent random variables
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 19, Tome 412 (2013), pp. 207-214

Voir la notice de l'article provenant de la source Math-Net.Ru

In a recent author's work the cyclic behavior of maxima in a hierarchical summation scheme was discovered. In the present note we show how the same phenomenon appears in the scheme of conventional summation: the distribution of maximum of $2^n$ independent copies of a sum of $n$ i.i.d. random variables approaches, as $n$ grows, some helix in the space of distributions.
@article{ZNSL_2013_412_a9,
     author = {M. A. Lifshits},
     title = {Cyclic behavior of the maximum of  sums of independent random variables},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {207--214},
     publisher = {mathdoc},
     volume = {412},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_412_a9/}
}
TY  - JOUR
AU  - M. A. Lifshits
TI  - Cyclic behavior of the maximum of  sums of independent random variables
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 207
EP  - 214
VL  - 412
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_412_a9/
LA  - ru
ID  - ZNSL_2013_412_a9
ER  - 
%0 Journal Article
%A M. A. Lifshits
%T Cyclic behavior of the maximum of  sums of independent random variables
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 207-214
%V 412
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_412_a9/
%G ru
%F ZNSL_2013_412_a9
M. A. Lifshits. Cyclic behavior of the maximum of  sums of independent random variables. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 19, Tome 412 (2013), pp. 207-214. http://geodesic.mathdoc.fr/item/ZNSL_2013_412_a9/