Nonsingular transformations of the symmetric Lévy processes
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 18, Tome 408 (2012), pp. 102-114 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper we consider the group of transformations of the space of trajectories of the symmetric $\alpha$-stable Lévy laws with constant of stability $\alpha\in[0;2)$. For $\alpha=0$ the true analog of the stable Lévy process (so called $0$-stable process) is the $\gamma$-process, whose measure is quasi-invariant under the action of the group of multiplicators $\mathcal M\equiv\{M_a\colon a\geq0;\lg a\in L^1\}$ – the action of $M_a$ on trajectories $\omega(.)$ is $(M_a\omega)(t)=a(t)\omega(t)$. For each $\alpha<2$ an appropriate conjugacy takes the group $\mathcal M$ to a group $\mathcal M_\alpha$ of nonlinear transformations of the trajectories and the law of the corresponding stable process is quasi-invariant under those groups. We prove that when $\alpha=2$, the appropriate changing of the coordinates reduces the group of symmetries to the Cameron–Martin group of nonsingular translations of the trajectories of Wiener process.
@article{ZNSL_2012_408_a6,
     author = {A. M. Vershik and N. V. Smorodina},
     title = {Nonsingular transformations of the symmetric {L\'evy} processes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {102--114},
     year = {2012},
     volume = {408},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a6/}
}
TY  - JOUR
AU  - A. M. Vershik
AU  - N. V. Smorodina
TI  - Nonsingular transformations of the symmetric Lévy processes
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 102
EP  - 114
VL  - 408
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a6/
LA  - ru
ID  - ZNSL_2012_408_a6
ER  - 
%0 Journal Article
%A A. M. Vershik
%A N. V. Smorodina
%T Nonsingular transformations of the symmetric Lévy processes
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 102-114
%V 408
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a6/
%G ru
%F ZNSL_2012_408_a6
A. M. Vershik; N. V. Smorodina. Nonsingular transformations of the symmetric Lévy processes. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 18, Tome 408 (2012), pp. 102-114. http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a6/

[1] Y. Takahashi, “Absolute continuity of Poisson random fields”, Publ. Res. Inst. Math. Sci., 26 (1990), 629–649 | DOI | MR

[2] J. Kerstan, K. Mattes, J. Mecke, Infinite Divisible Point Processes, Akademie-Verlag, Berlin, 1978

[3] W. Linde, Infinitely divisible and stable measures on Banach spaces, Teubner, Leipzig, 1983 | MR | Zbl

[4] A. V. Skorokhod, “O differentsiruemosti mer, sootvetstvuyuschikh sluchainym protsessam. I”, Teoriya veroyatn. i ee primen., 2:4 (1957), 417–443 | MR

[5] A. V. Skorokhod, Issledovaniya po teorii sluchainykh protsessov, Izd-vo Kievskogo un-ta, 1961

[6] A. V. Skorokhod, Stokhasticheskie protsessy s nezavisimymi prirascheniyami, Nauka, Moskva, 1986 | MR | Zbl

[7] N. V. Smorodina, “Invariantnye i kvaziinvariantnye preobrazovaniya mer, otvechayuschikh ustoichivym protsessam s nezavisimymi prirascheniyami”, Zap. nauchn. semin. POMI, 339, 2006, 135–150 | MR | Zbl

[8] J. F. C. Kingman, Poisson Processes, Oxford, 1993 | MR | Zbl

[9] I. M. Gel'fand, M. I. Graev, A. M. Vershik, “Representations of the group of diffeomorphisms”, Russ. Math. Surv., 30:6 (1975), 3–50 | MR | Zbl

[10] N. Tsilevich, A. Vershik, M. Yor, “An infinite-dimensional analogue of the Lebesgue measure and distinguished properties of the gamma process”, J. Funct. Anal., 185:1 (2001), 274–296 | DOI | MR | Zbl

[11] A. Vershik, N. Tsilevich, “Quasi-invariance of the gamma process and multiplicative properties of the Poisson–Dirichlet measures”, C. R. Acad. Sci. Paris Ser. I Math., 329 (1999), 163–168 | DOI | MR | Zbl

[12] A. M. Vershik, “Suschestvuet li mera Lebega v beskonechnomernom prostranstve?”, Trudy MIAN, 259, 2007, 256–281 | MR | Zbl

[13] P. Billingsli, Skhodimost veroyatnostnykh mer, Nauka, Moskva, 1977 | MR

[14] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii i deistviya nad nimi, Fizmatgiz, Moskva, 1958 | Zbl

[15] Kh.-S. Go, Skhodimost veroyatnostnykh mer, Mir, Moskva, 1977

[16] M. A. Lifshits, “Metod rassloenii dlya protsessov s nezavisimymi prirascheniyami”, Zap. nauchn. semin. LOMI, 130, 1983, 109–121 | MR