Cyclic behavior of maxima in a hierarchical summation scheme
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 18, Tome 408 (2012), pp. 268-284 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let i.i.d. symmetric Bernoulli random variables be associated to the edges of a binary tree having $n$ levels. To any leaf of the tree, we associate the sum of variables along the path connecting the leaf with the tree root. Let $M_n$ denote the maximum of all such sums. We prove that, as $n$ grows, the distributions of $M_n$ approach some helix in the space of distributions. Each element of this helix is an accumulation point for the shifts of distributions of $M_n$.
@article{ZNSL_2012_408_a15,
     author = {M. A. Lifshits},
     title = {Cyclic behavior of maxima in a~hierarchical summation scheme},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {268--284},
     year = {2012},
     volume = {408},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a15/}
}
TY  - JOUR
AU  - M. A. Lifshits
TI  - Cyclic behavior of maxima in a hierarchical summation scheme
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 268
EP  - 284
VL  - 408
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a15/
LA  - ru
ID  - ZNSL_2012_408_a15
ER  - 
%0 Journal Article
%A M. A. Lifshits
%T Cyclic behavior of maxima in a hierarchical summation scheme
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 268-284
%V 408
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a15/
%G ru
%F ZNSL_2012_408_a15
M. A. Lifshits. Cyclic behavior of maxima in a hierarchical summation scheme. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 18, Tome 408 (2012), pp. 268-284. http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a15/

[1] L. Addario-Berry, B. Reed, “Minima in branching random walks”, Ann. Probab., 37 (2009), 1044–1079 | DOI | MR | Zbl

[2] E. Aïdékon, “Convergence in law of the minimum of a branching random walk”, Ann. Probab. (to appear) ; Preprint, 2011, arXiv: 1101.1810 | MR

[3] M. Bachmann, “Limit theorems for the minimal position in a branching random walk with independent logconcave displacements”, Adv. Appl. Probab., 32 (2010), 159–176 | MR

[4] A. Bovier, I. Kurkova, “Derrida's generalized random energy models. I: Models with finitely many hierarchies”, Ann. Inst. H. Poincaré, 40 (2004), 439–480 | DOI | MR | Zbl

[5] M. Bramson, “Minimal displacement of branching random walk”, Z. Wahrsch. Theor., 45 (1978), 89–108 | DOI | MR | Zbl

[6] M. Bramson, Convergence of solutions of the Kolmogorov equation to travelling waves, Mem. Amer. Math. Soc., 44, no. 285, 1983 | MR

[7] M. Bramson, O. Zeitouni, “Tightness for a family of recursive equations”, Ann. Probab., 37 (2009), 615–653 | DOI | MR | Zbl

[8] W. Feller, An Introduction to Probability Theory and Its Applications, v. I, 2nd ed., Wiley, New York, 1957 | MR | Zbl

[9] J. M. Hammersley, “Postulates for subadditive processes”, Ann. Probab., 2 (1974), 652–680 | DOI | MR | Zbl

[10] Y. Hu, Z. Shi, “Minimal position and critical martingale convergence in branching random walks, and directed polimers on disordered trees”, Ann. Probab., 37 (2009), 742–789 | DOI | MR | Zbl

[11] S. P. Lalley, T. Selke, “A conditional limit theorem for the frontier of the branching Brownian motion”, Ann. Probab., 15 (1983), 1052–1061 | DOI | MR

[12] S. P. Lalley, T. Selke, “Limit theorems for the frontier of a one-dimensional branching motion”, Ann. Probab., 20 (1992), 1310–1340 | DOI | MR | Zbl

[13] V. V. Petrov, Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972 | MR