On a~Diophantine representation of the predicate of provability
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part XII, Tome 407 (2012), pp. 77-104

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal P$ be the first order predicate calculus with a single binary predicate letter. Making use of the techniques of Diophantine coding developed in the works on Hilbert tenth problem, we construct a polynomial $F(t;x_1,\ldots,x_n)$ with integral rational coefficients such that the Diophantine equation $$ F(t_0;x_1,\ldots,x_n)=0 $$ is soluble in integers if and only if the formula of $\mathcal P$, numbered $t_0$ in the chosen numbering of the formulae of $\mathcal P$, is provable in $\mathcal P$. As an application of that construction, we describe a class of Diophantine equations which can be proved insoluble only under some additional axioms of the axiomatic set theory, for instance, assuming existence of an inaccessible cardinal.
@article{ZNSL_2012_407_a3,
     author = {M. Carl and B. Z. Moroz},
     title = {On {a~Diophantine} representation of the predicate of provability},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {77--104},
     publisher = {mathdoc},
     volume = {407},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_407_a3/}
}
TY  - JOUR
AU  - M. Carl
AU  - B. Z. Moroz
TI  - On a~Diophantine representation of the predicate of provability
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 77
EP  - 104
VL  - 407
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_407_a3/
LA  - en
ID  - ZNSL_2012_407_a3
ER  - 
%0 Journal Article
%A M. Carl
%A B. Z. Moroz
%T On a~Diophantine representation of the predicate of provability
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 77-104
%V 407
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_407_a3/
%G en
%F ZNSL_2012_407_a3
M. Carl; B. Z. Moroz. On a~Diophantine representation of the predicate of provability. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part XII, Tome 407 (2012), pp. 77-104. http://geodesic.mathdoc.fr/item/ZNSL_2012_407_a3/