Some formulas for the number of gluings
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part V, Tome 406 (2012), pp. 117-156

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the number of ways to glue a surface of genus $g$ has been investigated. We've proven formulas for the number of gluings sphere from three polygons and from two bicolored polygons. Moreover, we've given a new proofs on the formulas for the number of gluings sphere and torus from two polygons.
@article{ZNSL_2012_406_a6,
     author = {A. V. Pastor and O. P. Rodionova},
     title = {Some formulas for the number of gluings},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {117--156},
     publisher = {mathdoc},
     volume = {406},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_406_a6/}
}
TY  - JOUR
AU  - A. V. Pastor
AU  - O. P. Rodionova
TI  - Some formulas for the number of gluings
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 117
EP  - 156
VL  - 406
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_406_a6/
LA  - ru
ID  - ZNSL_2012_406_a6
ER  - 
%0 Journal Article
%A A. V. Pastor
%A O. P. Rodionova
%T Some formulas for the number of gluings
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 117-156
%V 406
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_406_a6/
%G ru
%F ZNSL_2012_406_a6
A. V. Pastor; O. P. Rodionova. Some formulas for the number of gluings. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part V, Tome 406 (2012), pp. 117-156. http://geodesic.mathdoc.fr/item/ZNSL_2012_406_a6/