Some formulas for the number of gluings
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part V, Tome 406 (2012), pp. 117-156
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper the number of ways to glue a surface of genus $g$ has been investigated. We've proven formulas for the number of gluings sphere from three polygons and from two bicolored polygons. Moreover, we've given a new proofs on the formulas for the number of gluings sphere and torus from two polygons.
@article{ZNSL_2012_406_a6,
     author = {A. V. Pastor and O. P. Rodionova},
     title = {Some formulas for the number of gluings},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {117--156},
     year = {2012},
     volume = {406},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_406_a6/}
}
TY  - JOUR
AU  - A. V. Pastor
AU  - O. P. Rodionova
TI  - Some formulas for the number of gluings
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 117
EP  - 156
VL  - 406
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_406_a6/
LA  - ru
ID  - ZNSL_2012_406_a6
ER  - 
%0 Journal Article
%A A. V. Pastor
%A O. P. Rodionova
%T Some formulas for the number of gluings
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 117-156
%V 406
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_406_a6/
%G ru
%F ZNSL_2012_406_a6
A. V. Pastor; O. P. Rodionova. Some formulas for the number of gluings. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part V, Tome 406 (2012), pp. 117-156. http://geodesic.mathdoc.fr/item/ZNSL_2012_406_a6/

[1] N. M. Adrianov, “Analog formuly Kharera–agira dlya odnokletochnykh dvukrashennykh kart”, Funkts. analiz prilozh., 31:3 (1997), 1–9 | DOI | MR | Zbl

[2] J. E. Andersen, R. C. Penner, C. M. Reidys, R R. Wang, Linear chord diagrams on two intervals, 2010, arXiv: 1010.5857

[3] R. Cori, A. Machì, “Maps, hypermaps and their automorphisms: a survey. I”, Exposition. Math., 10:5 (1992), 403–427 | MR | Zbl

[4] I. P. Goulden, A. Nica, “A direct bijection for the Harer–Zagier formula”, J. Combin. Theory Ser. A, 111:2 (2005), 224–238 | DOI | MR | Zbl

[5] I. P. Goulden, W. Slofstra, “Annular embeddings of permutations for arbitrary genus”, J. Combin. Theory Ser. A, 117 (2010), 272–288 | DOI | MR | Zbl

[6] R. Graham, D. Knuth, O. Patashnik, Concrete mathematics. A foundation for computer science, 1988 | MR | MR

[7] V. A. Gurvich, G. B. Shabat, “Reshenie uravneniya Kharera–agira”, Uspekhi mat. nauk, 48:1 (1993), 159–160 | MR | Zbl

[8] J. Harer, D. Zagier, “The Euler characteristic of the moduli space of curves”, Inv. Math., 85:3 (1986), 457–485 | DOI | MR | Zbl

[9] D. M. Jackson, “Some combinatorial problems associated with products of conjugacy classes of the symmetric group”, J. Combin. Theory Ser. A, 49 (1988), 363–369 | DOI | MR | Zbl

[10] G. Schaeffer, E. Vassilieva, “A bijective proof of Jackson's formula for the number of factorizations of a cycle”, J. Combin. Theory Ser. A, 115:6 (2008), 903–924 | DOI | MR | Zbl