Some formulas for the number of gluings
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part V, Tome 406 (2012), pp. 117-156
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper the number of ways to glue a surface of genus $g$ has been investigated. We've proven formulas for the number of gluings sphere from three polygons and from two bicolored polygons. Moreover, we've given a new proofs on the formulas for the number of gluings sphere and torus from two polygons.
			
            
            
            
          
        
      @article{ZNSL_2012_406_a6,
     author = {A. V. Pastor and O. P. Rodionova},
     title = {Some formulas for the number of gluings},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {117--156},
     publisher = {mathdoc},
     volume = {406},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_406_a6/}
}
                      
                      
                    A. V. Pastor; O. P. Rodionova. Some formulas for the number of gluings. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part V, Tome 406 (2012), pp. 117-156. http://geodesic.mathdoc.fr/item/ZNSL_2012_406_a6/