Spanning trees with many leaves: lower bounds in terms of number of vertices of degree~1, 3 and at least~4
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part V, Tome 406 (2012), pp. 67-94

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that every connected graph with $s$ vertices of degree 1 and 3 and $t$ vertices of degree at least 4 has a spanning tree with at least $\frac13t+\frac14s+\frac32$ leaves. We present an infinite series of graphs showing that our bound is tight.
@article{ZNSL_2012_406_a3,
     author = {D. V. Karpov},
     title = {Spanning trees with many leaves:  lower bounds in terms of number of vertices of degree~1, 3 and at least~4},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {67--94},
     publisher = {mathdoc},
     volume = {406},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_406_a3/}
}
TY  - JOUR
AU  - D. V. Karpov
TI  - Spanning trees with many leaves:  lower bounds in terms of number of vertices of degree~1, 3 and at least~4
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 67
EP  - 94
VL  - 406
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_406_a3/
LA  - ru
ID  - ZNSL_2012_406_a3
ER  - 
%0 Journal Article
%A D. V. Karpov
%T Spanning trees with many leaves:  lower bounds in terms of number of vertices of degree~1, 3 and at least~4
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 67-94
%V 406
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_406_a3/
%G ru
%F ZNSL_2012_406_a3
D. V. Karpov. Spanning trees with many leaves:  lower bounds in terms of number of vertices of degree~1, 3 and at least~4. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part V, Tome 406 (2012), pp. 67-94. http://geodesic.mathdoc.fr/item/ZNSL_2012_406_a3/