Voir la notice du chapitre de livre
@article{ZNSL_2012_406_a3,
author = {D. V. Karpov},
title = {Spanning trees with many leaves: lower bounds in terms of number of vertices of degree~1, 3 and at least~4},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {67--94},
year = {2012},
volume = {406},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_406_a3/}
}
TY - JOUR AU - D. V. Karpov TI - Spanning trees with many leaves: lower bounds in terms of number of vertices of degree 1, 3 and at least 4 JO - Zapiski Nauchnykh Seminarov POMI PY - 2012 SP - 67 EP - 94 VL - 406 UR - http://geodesic.mathdoc.fr/item/ZNSL_2012_406_a3/ LA - ru ID - ZNSL_2012_406_a3 ER -
D. V. Karpov. Spanning trees with many leaves: lower bounds in terms of number of vertices of degree 1, 3 and at least 4. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part V, Tome 406 (2012), pp. 67-94. http://geodesic.mathdoc.fr/item/ZNSL_2012_406_a3/
[1] J. A. Storer, “Constructing full spanning trees for cubic graphs”, Inform. Process. Lett., 13:1 (1981), 8–11 | DOI | MR | Zbl
[2] D. J. Kleitman, D. B. West, “Spanning trees with many leaves”, SIAM J. Discrete Math., 4:1 (1991), 99–106 | DOI | MR | Zbl
[3] J. R. Griggs, M. Wu, “Spanning trees in graphs of minimum degree 4 or 5”, Discrete Math., 104 (1992), 167–183 | DOI | MR | Zbl
[4] N. Alon, “Transversal numbers of uniform hypergraphs”, Graphs Combinator., 6 (1990), 1–4 | DOI | MR | Zbl
[5] G. Ding, T. Johnson, P. Seymour, “Spanning trees with many leaves”, J. Graph Theory, 37:4 (2001), 189–197 | DOI | MR | Zbl
[6] Y. Caro, D. B. West, R. Yuster, “Connected domination and spanning trees with many leaves”, SIAM J. Discrete Math., 13:2 (2000), 202–211 | DOI | MR
[7] P. S. Bonsma, “Spanning trees with many leaves in graphs with minimum degree three”, SIAM J. Discrete Math., 22:3 (2008), 920–937 | DOI | MR | Zbl
[8] P. S. Bonsma, F. Zickfeld, “Spanning trees with many leaves in graphs without diamonds and blossoms”, LATIN 2008: Theoretical informatics, Lect. Notes Comput. Sci., 4957, Springer, Berlin, 2008, 531–543 | DOI | MR | Zbl
[9] N. V. Gravin, “Postroenie ostovnogo dereva grafa s bolshim kolichestvom listev”, Zap. nauchn. semin. POMI, 381, 2010, 31–46 | MR
[10] D. V. Karpov, “Ostovnoe derevo s bolshim kolichestvom visyachikh vershin”, Zap. nauchn. semin. POMI, 381, 2010, 78–87 | MR
[11] A. V. Bankevich, D. V. Karpov, “Otsenki kolichestva visyachikh vershin v ostovnykh derevyakh”, Zap. nauchn. semin. POMI, 391, 2011, 18–34 | MR
[12] A. V. Bankevich, “Otsenki kolichestva visyachikh vershin v ostovnykh derevyakh v grafakh bez treugolnikov”, Zap. nauchn. semin. POMI, 391, 2011, 5–17 | MR
[13] D. V. Karpov, “Ostovnye derevya s bolshim kolichestvom visyachikh vershin: novye nizhnie otsenki cherez kolichestvo vershin stepenei 3 i 4”, Zap. nauchn. semin. POMI, 406, 2012, 31–66 | MR