Voir la notice du chapitre de livre
@article{ZNSL_2012_404_a14,
author = {O. M. Fomenko},
title = {Extreme values of automorphic $L$-functions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {233--247},
year = {2012},
volume = {404},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_404_a14/}
}
O. M. Fomenko. Extreme values of automorphic $L$-functions. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 27, Tome 404 (2012), pp. 233-247. http://geodesic.mathdoc.fr/item/ZNSL_2012_404_a14/
[1] E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd edn, revised by D. R. Heath-Brown, New York, 1986 | MR | Zbl
[2] K. Ramachandra, “On the frequency of Titchmarsh's phenomenon for $\zeta(s)$”, J. London Math. Soc. (2), 8 (1974), 683–690 | DOI | MR | Zbl
[3] R. Balasubramanian, K. Ramachandra, “On the frequency of Titchmarsh's phenomenon for $\zeta(s)$. III”, Proc. Indian Acad. Sci., 86A (1977), 341–351 | MR | Zbl
[4] N. Levinson, “$\Omega$-theorems for the Riemann zeta-function”, Acta Arithm., 20 (1972), 317–330 | MR | Zbl
[5] H. L. Montgomery, “Extreme values of the Riemann zeta-function”, Comment. Math. Helv., 52 (1977), 511–518 | DOI | MR | Zbl
[6] K. Soundararajan, “Extreme values of zeta and $L$-functions”, Math. Ann., 342 (2008), 467–486 | DOI | MR | Zbl
[7] O. M. Fomenko, “Drobnye momenty avtomorfnykh $L$-funktsii. II”, Zap. nauchn. semin. POMI, 383, 2010, 179–192
[8] K. Matsumoto, “Liftings and mean value theorems for automorphic $L$-functions”, Proc. London Math. Soc. (3), 90 (2005), 297–320 | DOI | MR | Zbl
[9] O. M. Fomenko, “Drobnye momenty avtomorfnykh $L$-funktsii”, Algebra i analiz, 22:2 (2010), 204–224 | MR | Zbl
[10] A. Ivić, The Riemann zeta-function, New York, 1985 | MR
[11] A. Sankaranarayanan, J. Sengupta, “Omega theorems for a class of $L$-functions (A note on the Rankin–Selberg zeta-function)”, Funct. Approx. Comment. Math., 36 (2006), 119–131 | DOI | MR | Zbl
[12] A. Ivić, “On zeta-functions associated with Fourier coefficients of cusp forms”, Proc. of the Amalfi Conf. on Analytic Number Theory (Maiori, 1989), Salerno, 1992, 231–246 | MR | Zbl
[13] Dzh. Kassels, A. Frëlikh (red.), Algebraicheskaya teoriya chisel, M., 1969
[14] M. Koike, “Higher reciprocity law, modular forms of weight 1 and elliptic curves”, Nagoya Math. J., 98 (1985), 109–115 | MR | Zbl
[15] C. J. Moreno, “The Hoheisel phenomenon for generalized Dirichlet series”, Proc. Amer. Math. Soc., 40 (1973), 47–51 | DOI | MR | Zbl