Extreme values of automorphic $L$-functions
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 27, Tome 404 (2012), pp. 233-247
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We treat $\Omega$-theorems for some automorphic $L$-functons, and for the Rankin–Selberg $L$-function $L(s,f\times f)$ in particular.
For example, as $t$ tends to infinity,
$$
\log\Bigg|L\Biggl(\frac12+it,f\times f\Biggr)\Bigg|=\Omega_+\Biggl(\Biggl(\frac{\log t}{\log\log t}\Biggr)^{1/2}\Biggr),
$$
and
$$
\log\big|L(\sigma_0+it,f\times f)\big|=\Omega_+\Biggl(\Biggl(\frac{\log t}{\log\log t}\Biggr)^{1-\sigma_0}\Biggr)
$$
for fixed $\sigma_0\in\big(\frac12,1\big)$.
			
            
            
            
          
        
      @article{ZNSL_2012_404_a14,
     author = {O. M. Fomenko},
     title = {Extreme values of automorphic $L$-functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {233--247},
     publisher = {mathdoc},
     volume = {404},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_404_a14/}
}
                      
                      
                    O. M. Fomenko. Extreme values of automorphic $L$-functions. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 27, Tome 404 (2012), pp. 233-247. http://geodesic.mathdoc.fr/item/ZNSL_2012_404_a14/