Extreme values of automorphic $L$-functions
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 27, Tome 404 (2012), pp. 233-247

Voir la notice de l'article provenant de la source Math-Net.Ru

We treat $\Omega$-theorems for some automorphic $L$-functons, and for the Rankin–Selberg $L$-function $L(s,f\times f)$ in particular. For example, as $t$ tends to infinity, $$ \log\Bigg|L\Biggl(\frac12+it,f\times f\Biggr)\Bigg|=\Omega_+\Biggl(\Biggl(\frac{\log t}{\log\log t}\Biggr)^{1/2}\Biggr), $$ and $$ \log\big|L(\sigma_0+it,f\times f)\big|=\Omega_+\Biggl(\Biggl(\frac{\log t}{\log\log t}\Biggr)^{1-\sigma_0}\Biggr) $$ for fixed $\sigma_0\in\big(\frac12,1\big)$.
@article{ZNSL_2012_404_a14,
     author = {O. M. Fomenko},
     title = {Extreme values of automorphic $L$-functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {233--247},
     publisher = {mathdoc},
     volume = {404},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_404_a14/}
}
TY  - JOUR
AU  - O. M. Fomenko
TI  - Extreme values of automorphic $L$-functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 233
EP  - 247
VL  - 404
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_404_a14/
LA  - ru
ID  - ZNSL_2012_404_a14
ER  - 
%0 Journal Article
%A O. M. Fomenko
%T Extreme values of automorphic $L$-functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 233-247
%V 404
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_404_a14/
%G ru
%F ZNSL_2012_404_a14
O. M. Fomenko. Extreme values of automorphic $L$-functions. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 27, Tome 404 (2012), pp. 233-247. http://geodesic.mathdoc.fr/item/ZNSL_2012_404_a14/