Extreme values of automorphic $L$-functions
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 27, Tome 404 (2012), pp. 233-247
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We treat $\Omega$-theorems for some automorphic $L$-functons, and for the Rankin–Selberg $L$-function $L(s,f\times f)$ in particular. For example, as $t$ tends to infinity, $$ \log\Bigg|L\Biggl(\frac12+it,f\times f\Biggr)\Bigg|=\Omega_+\Biggl(\Biggl(\frac{\log t}{\log\log t}\Biggr)^{1/2}\Biggr), $$ and $$ \log\big|L(\sigma_0+it,f\times f)\big|=\Omega_+\Biggl(\Biggl(\frac{\log t}{\log\log t}\Biggr)^{1-\sigma_0}\Biggr) $$ for fixed $\sigma_0\in\big(\frac12,1\big)$.
@article{ZNSL_2012_404_a14,
     author = {O. M. Fomenko},
     title = {Extreme values of automorphic $L$-functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {233--247},
     year = {2012},
     volume = {404},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_404_a14/}
}
TY  - JOUR
AU  - O. M. Fomenko
TI  - Extreme values of automorphic $L$-functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 233
EP  - 247
VL  - 404
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_404_a14/
LA  - ru
ID  - ZNSL_2012_404_a14
ER  - 
%0 Journal Article
%A O. M. Fomenko
%T Extreme values of automorphic $L$-functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 233-247
%V 404
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_404_a14/
%G ru
%F ZNSL_2012_404_a14
O. M. Fomenko. Extreme values of automorphic $L$-functions. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 27, Tome 404 (2012), pp. 233-247. http://geodesic.mathdoc.fr/item/ZNSL_2012_404_a14/

[1] E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd edn, revised by D. R. Heath-Brown, New York, 1986 | MR | Zbl

[2] K. Ramachandra, “On the frequency of Titchmarsh's phenomenon for $\zeta(s)$”, J. London Math. Soc. (2), 8 (1974), 683–690 | DOI | MR | Zbl

[3] R. Balasubramanian, K. Ramachandra, “On the frequency of Titchmarsh's phenomenon for $\zeta(s)$. III”, Proc. Indian Acad. Sci., 86A (1977), 341–351 | MR | Zbl

[4] N. Levinson, “$\Omega$-theorems for the Riemann zeta-function”, Acta Arithm., 20 (1972), 317–330 | MR | Zbl

[5] H. L. Montgomery, “Extreme values of the Riemann zeta-function”, Comment. Math. Helv., 52 (1977), 511–518 | DOI | MR | Zbl

[6] K. Soundararajan, “Extreme values of zeta and $L$-functions”, Math. Ann., 342 (2008), 467–486 | DOI | MR | Zbl

[7] O. M. Fomenko, “Drobnye momenty avtomorfnykh $L$-funktsii. II”, Zap. nauchn. semin. POMI, 383, 2010, 179–192

[8] K. Matsumoto, “Liftings and mean value theorems for automorphic $L$-functions”, Proc. London Math. Soc. (3), 90 (2005), 297–320 | DOI | MR | Zbl

[9] O. M. Fomenko, “Drobnye momenty avtomorfnykh $L$-funktsii”, Algebra i analiz, 22:2 (2010), 204–224 | MR | Zbl

[10] A. Ivić, The Riemann zeta-function, New York, 1985 | MR

[11] A. Sankaranarayanan, J. Sengupta, “Omega theorems for a class of $L$-functions (A note on the Rankin–Selberg zeta-function)”, Funct. Approx. Comment. Math., 36 (2006), 119–131 | DOI | MR | Zbl

[12] A. Ivić, “On zeta-functions associated with Fourier coefficients of cusp forms”, Proc. of the Amalfi Conf. on Analytic Number Theory (Maiori, 1989), Salerno, 1992, 231–246 | MR | Zbl

[13] Dzh. Kassels, A. Frëlikh (red.), Algebraicheskaya teoriya chisel, M., 1969

[14] M. Koike, “Higher reciprocity law, modular forms of weight 1 and elliptic curves”, Nagoya Math. J., 98 (1985), 109–115 | MR | Zbl

[15] C. J. Moreno, “The Hoheisel phenomenon for generalized Dirichlet series”, Proc. Amer. Math. Soc., 40 (1973), 47–51 | DOI | MR | Zbl