On the distribution of fractional parts of polynomials of two variables
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 27, Tome 404 (2012), pp. 222-232

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, upper bounds for sums of the form $$ \underset{(n_1,n_2)\in\Omega}{\sum\sum}\psi(f(n_1,n_2)), $$ where $\psi(x)=x-[x]-\frac12$, $f(x,y)$ is a polynomial, $(n_1,n_2)\in\mathbb Z^2$, and $\Omega$ is a domain in $\mathbb R^2$, are obtained. One of the upper bounds is of interest, particularly in connection with a lattice point problem considered in Theorem 2.
@article{ZNSL_2012_404_a13,
     author = {O. M. Fomenko},
     title = {On the distribution of fractional parts of polynomials of two variables},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {222--232},
     publisher = {mathdoc},
     volume = {404},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_404_a13/}
}
TY  - JOUR
AU  - O. M. Fomenko
TI  - On the distribution of fractional parts of polynomials of two variables
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 222
EP  - 232
VL  - 404
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_404_a13/
LA  - ru
ID  - ZNSL_2012_404_a13
ER  - 
%0 Journal Article
%A O. M. Fomenko
%T On the distribution of fractional parts of polynomials of two variables
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 222-232
%V 404
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_404_a13/
%G ru
%F ZNSL_2012_404_a13
O. M. Fomenko. On the distribution of fractional parts of polynomials of two variables. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 27, Tome 404 (2012), pp. 222-232. http://geodesic.mathdoc.fr/item/ZNSL_2012_404_a13/