On the distribution of fractional parts of polynomials of two variables
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 27, Tome 404 (2012), pp. 222-232
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In the paper, upper bounds for sums of the form 
$$
\underset{(n_1,n_2)\in\Omega}{\sum\sum}\psi(f(n_1,n_2)),
$$
where $\psi(x)=x-[x]-\frac12$, $f(x,y)$ is a polynomial, $(n_1,n_2)\in\mathbb Z^2$, and $\Omega$ is a domain in $\mathbb R^2$, are obtained. 
One of the upper bounds is of interest, particularly in connection with a lattice point problem considered in Theorem 2.
			
            
            
            
          
        
      @article{ZNSL_2012_404_a13,
     author = {O. M. Fomenko},
     title = {On the distribution of fractional parts of polynomials of two variables},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {222--232},
     publisher = {mathdoc},
     volume = {404},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_404_a13/}
}
                      
                      
                    O. M. Fomenko. On the distribution of fractional parts of polynomials of two variables. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 27, Tome 404 (2012), pp. 222-232. http://geodesic.mathdoc.fr/item/ZNSL_2012_404_a13/