On the distribution of fractional parts of polynomials of two variables
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 27, Tome 404 (2012), pp. 222-232
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the paper, upper bounds for sums of the form $$ \underset{(n_1,n_2)\in\Omega}{\sum\sum}\psi(f(n_1,n_2)), $$ where $\psi(x)=x-[x]-\frac12$, $f(x,y)$ is a polynomial, $(n_1,n_2)\in\mathbb Z^2$, and $\Omega$ is a domain in $\mathbb R^2$, are obtained. One of the upper bounds is of interest, particularly in connection with a lattice point problem considered in Theorem 2.
@article{ZNSL_2012_404_a13,
     author = {O. M. Fomenko},
     title = {On the distribution of fractional parts of polynomials of two variables},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {222--232},
     year = {2012},
     volume = {404},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_404_a13/}
}
TY  - JOUR
AU  - O. M. Fomenko
TI  - On the distribution of fractional parts of polynomials of two variables
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 222
EP  - 232
VL  - 404
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_404_a13/
LA  - ru
ID  - ZNSL_2012_404_a13
ER  - 
%0 Journal Article
%A O. M. Fomenko
%T On the distribution of fractional parts of polynomials of two variables
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 222-232
%V 404
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_404_a13/
%G ru
%F ZNSL_2012_404_a13
O. M. Fomenko. On the distribution of fractional parts of polynomials of two variables. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 27, Tome 404 (2012), pp. 222-232. http://geodesic.mathdoc.fr/item/ZNSL_2012_404_a13/

[1] I. M. Vinogradov, Izbrannye trudy, M., 1952

[2] M. A. Gelbke, “Ob asimptoticheskom vyrazhenii summy drobnykh chastei funktsii dvukh peremennykh”, Izv. AN SSSR. Otdel. fiz.-mat. nauk, 1930, 409–423 | Zbl

[3] E. Landau, Ausgewählte Abhandlungen zur Gitterpunktlehre, Berlin, 1962 | MR

[4] J. D. Vaaler, “Some extremal problems in Fourier analysis”, Bull. Amer. Math. Soc. (2), 12 (1985), 183–216 | DOI | MR | Zbl

[5] M. N. Huxley, Area, lattice points, and exponential sums, Oxford, 1996 | MR

[6] E. Landau, “Über die Gitterpunkte in einem Kreise”, Math. Z., 5 (1919), 319–320 | DOI | MR | Zbl

[7] K. Prakhar, Raspredelenie prostykh chisel, M., 1967

[8] O. M. Fomenko, “O raspredelenii drobnykh chastei mnogochlenov”, Zap. nauchn. semin. POMI, 392, 2011, 191–201 | MR

[9] H. L. Montgomery, Ten lectures on the interface between analytic number theory and harmonic analysis, Providence, Rhode Island, 1994 | MR

[10] V. N. Popov, “O chisle tselykh tochek pod paraboloi”, Mat. zametki, 18:5 (1975), 699–704 | MR | Zbl