On $k$-abelian avoidability
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part IV, Tome 402 (2012), pp. 170-182

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a recently defined notion of $k$-abelian equivalence of words by giving some basic results and concentrating on avoidability problems. This equivalence relation counts the numbers of factors of length $k$ for a fixed natural number $k$. We ask for the size of the smallest alphabet for which $k$-abelian squares and cubes can be avoided, respectively. For $2$-abelian squares this is four – as in the case of abelian words, while for $2$-abelian cubes we have only strong evidence that the size is two – as it is in the case of words. In addition, we point out a few properties of morphisms supporting the view that it might be difficult to find solutions to our questions by simply iterating a morphism.
@article{ZNSL_2012_402_a9,
     author = {M. Huova and J. Karhum\"aki},
     title = {On $k$-abelian avoidability},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {170--182},
     publisher = {mathdoc},
     volume = {402},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_402_a9/}
}
TY  - JOUR
AU  - M. Huova
AU  - J. Karhumäki
TI  - On $k$-abelian avoidability
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 170
EP  - 182
VL  - 402
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_402_a9/
LA  - en
ID  - ZNSL_2012_402_a9
ER  - 
%0 Journal Article
%A M. Huova
%A J. Karhumäki
%T On $k$-abelian avoidability
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 170-182
%V 402
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_402_a9/
%G en
%F ZNSL_2012_402_a9
M. Huova; J. Karhumäki. On $k$-abelian avoidability. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part IV, Tome 402 (2012), pp. 170-182. http://geodesic.mathdoc.fr/item/ZNSL_2012_402_a9/