Bases of schurian antisymmetric coherent configurations and isomorphism test for schurian tournaments
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part IV, Tome 402 (2012), pp. 108-147
Voir la notice de l'article provenant de la source Math-Net.Ru
It is known that for any permutation group $G$ of odd order there exists a subset of the permuted set whose stabilizer in $G$ is trivial, and if $G$ is primitive, then there also exists a base of size at most 3. These results are generalized to the coherent configuration of $G$, that is in this case schurian and antisymmetric. This enables us to construct a polynomial-time algorithm for recognizing and isomorphism testing of schurian tournaments (i.e., arc colored tournaments the coherent configurations of which are schurian).
@article{ZNSL_2012_402_a7,
author = {I. N. Ponomarenko},
title = {Bases of schurian antisymmetric coherent configurations and isomorphism test for schurian tournaments},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {108--147},
publisher = {mathdoc},
volume = {402},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_402_a7/}
}
TY - JOUR AU - I. N. Ponomarenko TI - Bases of schurian antisymmetric coherent configurations and isomorphism test for schurian tournaments JO - Zapiski Nauchnykh Seminarov POMI PY - 2012 SP - 108 EP - 147 VL - 402 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2012_402_a7/ LA - en ID - ZNSL_2012_402_a7 ER -
I. N. Ponomarenko. Bases of schurian antisymmetric coherent configurations and isomorphism test for schurian tournaments. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part IV, Tome 402 (2012), pp. 108-147. http://geodesic.mathdoc.fr/item/ZNSL_2012_402_a7/