Bases of schurian antisymmetric coherent configurations and isomorphism test for schurian tournaments
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part IV, Tome 402 (2012), pp. 108-147 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is known that for any permutation group $G$ of odd order there exists a subset of the permuted set whose stabilizer in $G$ is trivial, and if $G$ is primitive, then there also exists a base of size at most 3. These results are generalized to the coherent configuration of $G$, that is in this case schurian and antisymmetric. This enables us to construct a polynomial-time algorithm for recognizing and isomorphism testing of schurian tournaments (i.e., arc colored tournaments the coherent configurations of which are schurian).
@article{ZNSL_2012_402_a7,
     author = {I. N. Ponomarenko},
     title = {Bases of schurian antisymmetric coherent configurations and isomorphism test for schurian tournaments},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {108--147},
     year = {2012},
     volume = {402},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_402_a7/}
}
TY  - JOUR
AU  - I. N. Ponomarenko
TI  - Bases of schurian antisymmetric coherent configurations and isomorphism test for schurian tournaments
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 108
EP  - 147
VL  - 402
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_402_a7/
LA  - en
ID  - ZNSL_2012_402_a7
ER  - 
%0 Journal Article
%A I. N. Ponomarenko
%T Bases of schurian antisymmetric coherent configurations and isomorphism test for schurian tournaments
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 108-147
%V 402
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_402_a7/
%G en
%F ZNSL_2012_402_a7
I. N. Ponomarenko. Bases of schurian antisymmetric coherent configurations and isomorphism test for schurian tournaments. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part IV, Tome 402 (2012), pp. 108-147. http://geodesic.mathdoc.fr/item/ZNSL_2012_402_a7/

[1] S. Evdokimov, I. Ponomarenko, “O primitivnykh kletochnykh algebrakh”, Zap. nauchn. semin. POMI, 256, 1999, 38–68 | MR | Zbl

[2] S. Evdokimov, I. Ponomarenko, “Kharakterizatsiya tsiklotomicheskikh skhem i normalnye koltsa Shura nad tsiklicheskoi gruppoi”, Algebra i analiz, 14:2 (2002), 11–55 | MR | Zbl

[3] S. Evdokimov, I. Ponomarenko, “Raspoznavanie i proverka izomorfizma tsirkulyantnykh grafov za polinomialnoe vremya”, Algebra i analiz, 15:6 (2003), 1–34 | MR | Zbl

[4] V. Arvind, B. Das, P. Mukhopadhyay, “Isomorphism and canonization of tournaments and hypertournaments”, J. Computer and System Sciences, 76 (2010), 509–523 | DOI | MR | Zbl

[5] L. Babai, “On the order of uniprimitive permutation groups”, Ann. Math., 113 (1981), 553–568 | DOI | MR | Zbl

[6] L. Babai, E. M. Luks, “Canonical labeling of graphs”, Proc. 15th ACM STOC, 1983, 171–183

[7] R. F. Bailey, P. J. Cameron, “Base size, metric dimension and other invariants of groups and graphs”, Bull. London Math. Soc., 43 (2011), 209–242 | DOI | MR | Zbl

[8] S. Evdokimov, I. Ponomarenko, “On highly closed cellular algebras and highly closed isomorphisms”, Electr. J. Combin., 6 (1999), # R18, 31 pp. | MR | Zbl

[9] S. Evdokimov, I. Ponomarenko, “Two-closure of odd permutation group in polynomial time”, Discr. Math., 235:1–3 (2001), 221–232 | DOI | MR | Zbl

[10] S. Evdokimov, I. Ponomarenko, “Permutation group approach to association schemes”, European J. Combin., 30:6 (2009), 1456–1476 | DOI | MR | Zbl

[11] S. Evdokimov, I. Ponomarenko, G. Tinhofer, “Forestal algebras and algebraic forests (on a new class of weakly compact graphs)”, Discr. Math., 225 (2000), 149–172 | DOI | MR | Zbl

[12] A. Espuelas, “Regular orbits on symplectic modules”, J. Algebra, 138 (1991), 1–12 | DOI | MR | Zbl

[13] A. Espuelas, “Large character degrees of groups of odd order”, Illinois J. Math., 35 (1991), 499–505 | MR | Zbl

[14] The GAP Group, GAP-4-Groups, Algorithms, and Programming, Version 4.4.5, 2005 http://www.gap-system.org

[15] D. Gluck, “Trivial set-stabilizers in finite permutation groups”, Can. J. Math., 35 (1983), 59–67 | DOI | MR | Zbl

[16] G. A. Jones, M. Klin, Y. Moshe, “Primitivity of Permutation Groups, Coherent Algebras and Matrices”, J. Combin. Theory Ser. A, 98 (2002), 210–217 | DOI | MR | Zbl

[17] O. Manz, T. Wolf, Representations of solvable groups, London Math. Soc. Lect. Note Ser., 185, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl

[18] M. Muzychuk, I. Ponomarenko, “On Pseudocyclic Association Schemes”, Ars Math. Contemporanea, 5:1 (2012), 1–25 | MR | Zbl

[19] A. Seress, “The minimal base size of primitive solvable permutation groups”, J. London Math. Soc., 53 (1996), 243–255 | DOI | MR | Zbl

[20] A. Seress, Permutation Group Algorithms, Cambridge Univ. Press, 2002 | MR | Zbl

[21] D. A. Suprunenko, Matrix Groups, Amer. Math. Soc., Providence, RI, 1976 | MR | Zbl

[22] Yong Yang, “Regular orbits of finite primitive solvable groups”, J. Algebra, 323 (2010), 2735–2755 | DOI | MR | Zbl

[23] B. Weisfeiler (editor), On construction and identification of graphs, Springer Lect. Notes, 558, 1976 | MR | Zbl

[24] P.-H. Zieschang, Theory of Association Schemes, Springer, Berlin–Heidelberg, 2005 | MR | Zbl