Bases of schurian antisymmetric coherent configurations and isomorphism test for schurian tournaments
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part IV, Tome 402 (2012), pp. 108-147

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known that for any permutation group $G$ of odd order there exists a subset of the permuted set whose stabilizer in $G$ is trivial, and if $G$ is primitive, then there also exists a base of size at most 3. These results are generalized to the coherent configuration of $G$, that is in this case schurian and antisymmetric. This enables us to construct a polynomial-time algorithm for recognizing and isomorphism testing of schurian tournaments (i.e., arc colored tournaments the coherent configurations of which are schurian).
@article{ZNSL_2012_402_a7,
     author = {I. N. Ponomarenko},
     title = {Bases of schurian antisymmetric coherent configurations and isomorphism test for schurian tournaments},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {108--147},
     publisher = {mathdoc},
     volume = {402},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_402_a7/}
}
TY  - JOUR
AU  - I. N. Ponomarenko
TI  - Bases of schurian antisymmetric coherent configurations and isomorphism test for schurian tournaments
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 108
EP  - 147
VL  - 402
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_402_a7/
LA  - en
ID  - ZNSL_2012_402_a7
ER  - 
%0 Journal Article
%A I. N. Ponomarenko
%T Bases of schurian antisymmetric coherent configurations and isomorphism test for schurian tournaments
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 108-147
%V 402
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_402_a7/
%G en
%F ZNSL_2012_402_a7
I. N. Ponomarenko. Bases of schurian antisymmetric coherent configurations and isomorphism test for schurian tournaments. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part IV, Tome 402 (2012), pp. 108-147. http://geodesic.mathdoc.fr/item/ZNSL_2012_402_a7/