Operator Lipschitz functions and linear fractional transformations
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 40, Tome 401 (2012), pp. 5-52
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is known that the function $t^2\sin\frac1t$ is an operator Lipschitz function on the real line $\mathbb R$. We prove that the function $\sin$ can be replaced by any operator Lipschitz function $f$ with $f(0)=0$. In other words, for every operator Lipschitz function $f$ the function $t^2 f(\frac1t)$ is also operator Lipschitz if $f(0)=0$. The function $f$ can be defined on an arbitrary closed subset of the complex plane $\mathbb C$. Moreover, the linear fractional transformation $\frac1t$ can be replaced by every linear fractional transformation $\varphi$. In this case, we assert that the function $\dfrac{f\circ\varphi}{\varphi'}$ is operator Lipschitz for every operator Lipschitz function $f$ provided $f(\varphi(\infty))=0$.
			
            
            
            
          
        
      @article{ZNSL_2012_401_a0,
     author = {A. B. Aleksandrov},
     title = {Operator {Lipschitz} functions and linear fractional transformations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--52},
     publisher = {mathdoc},
     volume = {401},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a0/}
}
                      
                      
                    A. B. Aleksandrov. Operator Lipschitz functions and linear fractional transformations. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 40, Tome 401 (2012), pp. 5-52. http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a0/