Operator Lipschitz functions and linear fractional transformations
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 40, Tome 401 (2012), pp. 5-52

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known that the function $t^2\sin\frac1t$ is an operator Lipschitz function on the real line $\mathbb R$. We prove that the function $\sin$ can be replaced by any operator Lipschitz function $f$ with $f(0)=0$. In other words, for every operator Lipschitz function $f$ the function $t^2 f(\frac1t)$ is also operator Lipschitz if $f(0)=0$. The function $f$ can be defined on an arbitrary closed subset of the complex plane $\mathbb C$. Moreover, the linear fractional transformation $\frac1t$ can be replaced by every linear fractional transformation $\varphi$. In this case, we assert that the function $\dfrac{f\circ\varphi}{\varphi'}$ is operator Lipschitz for every operator Lipschitz function $f$ provided $f(\varphi(\infty))=0$.
@article{ZNSL_2012_401_a0,
     author = {A. B. Aleksandrov},
     title = {Operator {Lipschitz} functions and linear fractional transformations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--52},
     publisher = {mathdoc},
     volume = {401},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a0/}
}
TY  - JOUR
AU  - A. B. Aleksandrov
TI  - Operator Lipschitz functions and linear fractional transformations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 5
EP  - 52
VL  - 401
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a0/
LA  - ru
ID  - ZNSL_2012_401_a0
ER  - 
%0 Journal Article
%A A. B. Aleksandrov
%T Operator Lipschitz functions and linear fractional transformations
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 5-52
%V 401
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a0/
%G ru
%F ZNSL_2012_401_a0
A. B. Aleksandrov. Operator Lipschitz functions and linear fractional transformations. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 40, Tome 401 (2012), pp. 5-52. http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a0/