The complexity of inversion of explicit Goldreich's function by DPLL algorithms
Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part X, Tome 399 (2012), pp. 88-108
Voir la notice de l'article provenant de la source Math-Net.Ru
The Goldreich's function has $n$ binary inputs and $n$ binary outputs. Every output depends on $d$ inputs and is computed from them by the fixed predicate of arity $d$. Every Goldreich's function is defined by it's dependency graph $G$ and predicate $P$. In 2000 O. Goldreich formulated a conjecture that if $G$ is an expander and $P$ is a random predicate of arity $d$ then the corresponding function is one way. In this paper we give a simple proof of the exponential lower bound of the Goldreich's function inversion by myopic DPLL algorithms. A dependency graph $G$ in our construction may be based on an arbitrary expander, particulary it is possible to use an explicit expander; while all all previously known results are based on random dependency graphs. The predicate $P$ may be linear or slightly nonlinear. Our construction may be used in the proof of lower bounds for drunken DPLL algorithms as well.
@article{ZNSL_2012_399_a4,
author = {D. M. Itsykson and D. O. Sokolov},
title = {The complexity of inversion of explicit {Goldreich's} function by {DPLL} algorithms},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {88--108},
publisher = {mathdoc},
volume = {399},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_399_a4/}
}
TY - JOUR AU - D. M. Itsykson AU - D. O. Sokolov TI - The complexity of inversion of explicit Goldreich's function by DPLL algorithms JO - Zapiski Nauchnykh Seminarov POMI PY - 2012 SP - 88 EP - 108 VL - 399 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2012_399_a4/ LA - en ID - ZNSL_2012_399_a4 ER -
D. M. Itsykson; D. O. Sokolov. The complexity of inversion of explicit Goldreich's function by DPLL algorithms. Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part X, Tome 399 (2012), pp. 88-108. http://geodesic.mathdoc.fr/item/ZNSL_2012_399_a4/