Circuit complexity of linear functions: gate elimination and feeble security
Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part X, Tome 399 (2012), pp. 65-87
Voir la notice de l'article provenant de la source Math-Net.Ru
In this work, we consider provably secure cryptographic constructions in the context of circuit complexity. Based on the ideas of provably secure trapdoor functions previously developed in (Hirsch, Nikolenko, 2009; Melanich, 2009), we present a new linear construction of a provably secure trapdoor function with order of security $5/4$. Besides, we present an in-depth general study of the gate elimination method for the case of linear functions. We also give a non-constructive proof of nonlinear lower bounds on the circuit complexity of linear Boolean functions and upper bounds on circuit implementations of linear Boolean functions, obtaining specific constants.
@article{ZNSL_2012_399_a3,
author = {A. P. Davydow and S. I. Nikolenko},
title = {Circuit complexity of linear functions: gate elimination and feeble security},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {65--87},
publisher = {mathdoc},
volume = {399},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_399_a3/}
}
TY - JOUR AU - A. P. Davydow AU - S. I. Nikolenko TI - Circuit complexity of linear functions: gate elimination and feeble security JO - Zapiski Nauchnykh Seminarov POMI PY - 2012 SP - 65 EP - 87 VL - 399 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2012_399_a3/ LA - ru ID - ZNSL_2012_399_a3 ER -
A. P. Davydow; S. I. Nikolenko. Circuit complexity of linear functions: gate elimination and feeble security. Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part X, Tome 399 (2012), pp. 65-87. http://geodesic.mathdoc.fr/item/ZNSL_2012_399_a3/