Average approximation of tensor product-type random fields of increasing dimension
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 17, Tome 396 (2011), pp. 233-256

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider a sequence of random fields $X_d$, $d\in\mathbb N$, given by $$ X_d(t)=\sum_{k\in\mathbb N^d}\prod^d_{l=1}\lambda(k_l)\xi_k\prod^d_{l=1}\varphi_{k_l}(t_l),\quad t\in[0,1]^d, $$ where $(\lambda(i))_{i\in\mathbb N}\in l_2$, $(\varphi_i)_{i\in\mathbb N}$ is an orthonormal system in $L_2[0,1]$ and $(\xi_k)_{k\in\mathbb N^d}$ are non-correlated random variables with zero mean and unit variance. We investigate the exact asymptotic behavior of average-case complexity of approximation to $X_d$ by $n$-term partial sums providing a fixed level of relative error, as $d\to\infty$. The result depends on existence of lattice structure of $(\lambda(i))_{i\in\mathbb N}$.
@article{ZNSL_2011_396_a16,
     author = {A. A. Khartov},
     title = {Average approximation of tensor product-type random fields of increasing dimension},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {233--256},
     publisher = {mathdoc},
     volume = {396},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a16/}
}
TY  - JOUR
AU  - A. A. Khartov
TI  - Average approximation of tensor product-type random fields of increasing dimension
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 233
EP  - 256
VL  - 396
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a16/
LA  - ru
ID  - ZNSL_2011_396_a16
ER  - 
%0 Journal Article
%A A. A. Khartov
%T Average approximation of tensor product-type random fields of increasing dimension
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 233-256
%V 396
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a16/
%G ru
%F ZNSL_2011_396_a16
A. A. Khartov. Average approximation of tensor product-type random fields of increasing dimension. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 17, Tome 396 (2011), pp. 233-256. http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a16/