How to distinguish between the latently real matrices and the block quaternions?
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIV, Tome 395 (2011), pp. 61-66 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let a complex $n\times n$ matrix $A$ be unitarily similar to its entrywise conjugate matrix $\overline A$. If the unitary matrix $P$ in the relation $\overline A=P^*AP$ can be chosen symmetric (skew-symmetric), then $A$ is called a latently real matrix (respectively, a generalized block quaternion). Only these two cases are possible if $A$ is a (unitarily) irreducible matrix. The following question is discussed: How to find out whether the given $A$ is a latently real matrix or a generalized block quaternion?
@article{ZNSL_2011_395_a4,
     author = {Kh. D. Ikramov},
     title = {How to distinguish between the latently real matrices and the block quaternions?},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {61--66},
     year = {2011},
     volume = {395},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a4/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - How to distinguish between the latently real matrices and the block quaternions?
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 61
EP  - 66
VL  - 395
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a4/
LA  - ru
ID  - ZNSL_2011_395_a4
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T How to distinguish between the latently real matrices and the block quaternions?
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 61-66
%V 395
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a4/
%G ru
%F ZNSL_2011_395_a4
Kh. D. Ikramov. How to distinguish between the latently real matrices and the block quaternions?. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIV, Tome 395 (2011), pp. 61-66. http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a4/

[1] Kh. D. Ikramov, “O konechnom ratsionalnom kriterii neprivodimosti matrits”, Vestn. Mosk. un-ta. Ser. 15. Vychisl. matematika i kibernetika, 2007, no. 3, 16–18 | MR | Zbl

[2] Kh. D. Ikramov, “O latentno-veschestvennykh matritsakh i blochnykh kvaternionakh”, Zap. nauchn. semin. POMI, 382, 2010, 47–54 | MR

[3] Kh. D. Ikramov, “O kompleksnykh matritsakh, unitarno podobnykh veschestvennym matritsam”, Mat. zametki, 87:6 (2010), 840–847 | DOI | MR

[4] R. Khorn, Ch. Dzhonson, Matrichnyi analiz, Mir, M., 1989 | MR

[5] Kh. D. Ikramov, “O konechnykh algoritmakh dlya proverki unitarnogo podobiya i unitarnoi kongruentnosti pary kompleksnykh matrits”, Dokl. RAN, 437:2 (2011), 151–153 | MR | Zbl