How to distinguish between the latently real matrices and the block quaternions?
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIV, Tome 395 (2011), pp. 61-66

Voir la notice de l'article provenant de la source Math-Net.Ru

Let a complex $n\times n$ matrix $A$ be unitarily similar to its entrywise conjugate matrix $\overline A$. If the unitary matrix $P$ in the relation $\overline A=P^*AP$ can be chosen symmetric (skew-symmetric), then $A$ is called a latently real matrix (respectively, a generalized block quaternion). Only these two cases are possible if $A$ is a (unitarily) irreducible matrix. The following question is discussed: How to find out whether the given $A$ is a latently real matrix or a generalized block quaternion?
@article{ZNSL_2011_395_a4,
     author = {Kh. D. Ikramov},
     title = {How to distinguish between the latently real matrices and the block quaternions?},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {61--66},
     publisher = {mathdoc},
     volume = {395},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a4/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - How to distinguish between the latently real matrices and the block quaternions?
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 61
EP  - 66
VL  - 395
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a4/
LA  - ru
ID  - ZNSL_2011_395_a4
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T How to distinguish between the latently real matrices and the block quaternions?
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 61-66
%V 395
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a4/
%G ru
%F ZNSL_2011_395_a4
Kh. D. Ikramov. How to distinguish between the latently real matrices and the block quaternions?. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIV, Tome 395 (2011), pp. 61-66. http://geodesic.mathdoc.fr/item/ZNSL_2011_395_a4/