On the distribution of fractional parts of polynomials
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 26, Tome 392 (2011), pp. 191-201
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In the paper upper bounds for sums of the form 
$$
\sum_{0\le N}\psi\big(f(n)\big),
$$
where $f(x)$ is a polynomial and $\psi(x)=x-[x]-1/2$, are obtained. 
The cases 
$$
f(x)=\frac1\alpha x^2+\beta x+\gamma
$$ 
and
$$
f(x)=\frac1\alpha x^3+\beta x^2+\gamma x+\delta
$$
are considered, where $\alpha$ is a large positive number. 
Weyl's method and V. N. Popov's reasoning (Mat. Zametki, 18 (1975), 699–704) are used.
			
            
            
            
          
        
      @article{ZNSL_2011_392_a9,
     author = {O. M. Fomenko},
     title = {On the distribution of fractional parts of polynomials},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {191--201},
     publisher = {mathdoc},
     volume = {392},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a9/}
}
                      
                      
                    O. M. Fomenko. On the distribution of fractional parts of polynomials. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 26, Tome 392 (2011), pp. 191-201. http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a9/