On the distribution of fractional parts of polynomials
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 26, Tome 392 (2011), pp. 191-201

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper upper bounds for sums of the form $$ \sum_{0\le N}\psi\big(f(n)\big), $$ where $f(x)$ is a polynomial and $\psi(x)=x-[x]-1/2$, are obtained. The cases $$ f(x)=\frac1\alpha x^2+\beta x+\gamma $$ and $$ f(x)=\frac1\alpha x^3+\beta x^2+\gamma x+\delta $$ are considered, where $\alpha$ is a large positive number. Weyl's method and V. N. Popov's reasoning (Mat. Zametki, 18 (1975), 699–704) are used.
@article{ZNSL_2011_392_a9,
     author = {O. M. Fomenko},
     title = {On the distribution of fractional parts of polynomials},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {191--201},
     publisher = {mathdoc},
     volume = {392},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a9/}
}
TY  - JOUR
AU  - O. M. Fomenko
TI  - On the distribution of fractional parts of polynomials
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 191
EP  - 201
VL  - 392
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a9/
LA  - ru
ID  - ZNSL_2011_392_a9
ER  - 
%0 Journal Article
%A O. M. Fomenko
%T On the distribution of fractional parts of polynomials
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 191-201
%V 392
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a9/
%G ru
%F ZNSL_2011_392_a9
O. M. Fomenko. On the distribution of fractional parts of polynomials. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 26, Tome 392 (2011), pp. 191-201. http://geodesic.mathdoc.fr/item/ZNSL_2011_392_a9/