Quasimorphisms, random walks, and transient subsets in countable groups
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XX, Tome 390 (2011), pp. 210-236 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study interrelations between the theory of quasimorphisms and theory of random walks on groups, and establish the following criterion of transience for subsets of groups: if a subset of a countable group has bounded images under any three linearly independent homogeneous quasimorphisms on the group, then this subset is transient for all nondegenerate random walks on the group. From this it follows by results of M. Bestvina, K. Fujiwara, J. Birman, W. Menasco, and others that, in a certain sense, generic elements in mapping class groups of surfaces are pseudo-Anosov, generic braids in Artin's braid groups represent prime links and knots, generic elements in the commutant of every non-elementary hyperbolic group have large stable commutator length, etc.
@article{ZNSL_2011_390_a8,
     author = {A. V. Malyutin},
     title = {Quasimorphisms, random walks, and transient subsets in countable groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {210--236},
     year = {2011},
     volume = {390},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a8/}
}
TY  - JOUR
AU  - A. V. Malyutin
TI  - Quasimorphisms, random walks, and transient subsets in countable groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 210
EP  - 236
VL  - 390
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a8/
LA  - en
ID  - ZNSL_2011_390_a8
ER  - 
%0 Journal Article
%A A. V. Malyutin
%T Quasimorphisms, random walks, and transient subsets in countable groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 210-236
%V 390
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a8/
%G en
%F ZNSL_2011_390_a8
A. V. Malyutin. Quasimorphisms, random walks, and transient subsets in countable groups. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XX, Tome 390 (2011), pp. 210-236. http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a8/

[1] C. Bavard, “Longueur stable des commutateurs”, L'Enseign. Math., 37 (1991), 109–150 | MR | Zbl

[2] C. Berge, V. Chvátal (eds.), Topics on Perfect Graphs, North-Holland Math. Stud., 88, Annals of Discrete Math., 21, North-Holland, Amsterdam etc., 1984 | MR | Zbl

[3] M. Bestvina, K. Fujiwara, “Bounded cohomology of subgroups of mapping class groups”, Geom. Topol., 6 (2002), 69–89 | DOI | MR | Zbl

[4] M. Bestvina, K. Fujiwara, “Quasi-homomorphisms on mapping class groups”, Glasnik Matematicki, 42:1 (2007), 213–236 | DOI | MR | Zbl

[5] M. Björklund, T. Hartnick, “Biharmonic functions on groups and limit theorems for quasimorphisms along random walks”, Geom. Topol., 15 (2011), 123–143 | DOI | MR | Zbl

[6] D. Calegari, J. Maher, Statistics and compression of scl, preprint, 2010, arXiv: 1008.4952

[7] R. P. Dilworth, “A decomposition theorem for partially ordered sets”, Ann. Math., 51:1 (1950), 161–166 | DOI | MR | Zbl

[8] K. Engel, Sperner Theory, Cambridge University Press, Cambridge–New York, 1997 | MR | Zbl | Zbl

[9] T. Ito, “Braid ordering and the geometry of closed braid”, Geom. Topol., 15 (2011), 473–498 | DOI | MR | Zbl

[10] T. Ito, Braid ordering and knot genus, preprint, 2008, arXiv: 0805.2042 | MR

[11] E. Kowalski, The Large Sieve and its Applications: Arithmetic Geometry, Random Walks and Discrete Groups, Cambridge Tracts in Math., 175, Cambridge University Press, Cambridge, 2008 | MR | Zbl

[12] A. Lubotzky, C. Meiri, Sieve methods in group theory II: The mapping class group, preprint, 2011, arXiv: 1104.2450 | MR

[13] J. Maher, “Random walks on the mapping class group”, Duke Math. J., 156:3 (2011), 429–468 | DOI | MR | Zbl

[14] J. Maher, Exponential decay in the mapping class group, preprint, 2011, arXiv: 1104.5543 | MR

[15] J. Malestein, J. Souto, On genericity of pseudo-Anosovs in the Torelli group, preprint, 2011, arXiv: 1102.0601 | MR

[16] St. Petersburg Math. J., 15:3 (2004), 437–448 | DOI | MR | Zbl

[17] I. Rivin, “Walks on groups, counting reducible matrices, polynomials, and surface and free group automorphisms”, Duke Math. J., 142:2 (2008), 353–379 | DOI | MR | Zbl

[18] I. Rivin, “Walks on graphs and lattices – effective bounds and applications”, Forum Math., 21:4 (2009), 673–685 | DOI | MR | Zbl

[19] I. Rivin, “Zariski density and genericity”, Int. Math. Res. Not. IMRN, 19 (2010), 3649–3657 | MR | Zbl

[20] F. Spitzer, Principles of Random Walk, Graduate Texts in Mathematics, 34, Springer-Verlag, 1976 | MR | Zbl