@article{ZNSL_2011_390_a8,
author = {A. V. Malyutin},
title = {Quasimorphisms, random walks, and transient subsets in countable groups},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {210--236},
year = {2011},
volume = {390},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a8/}
}
A. V. Malyutin. Quasimorphisms, random walks, and transient subsets in countable groups. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XX, Tome 390 (2011), pp. 210-236. http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a8/
[1] C. Bavard, “Longueur stable des commutateurs”, L'Enseign. Math., 37 (1991), 109–150 | MR | Zbl
[2] C. Berge, V. Chvátal (eds.), Topics on Perfect Graphs, North-Holland Math. Stud., 88, Annals of Discrete Math., 21, North-Holland, Amsterdam etc., 1984 | MR | Zbl
[3] M. Bestvina, K. Fujiwara, “Bounded cohomology of subgroups of mapping class groups”, Geom. Topol., 6 (2002), 69–89 | DOI | MR | Zbl
[4] M. Bestvina, K. Fujiwara, “Quasi-homomorphisms on mapping class groups”, Glasnik Matematicki, 42:1 (2007), 213–236 | DOI | MR | Zbl
[5] M. Björklund, T. Hartnick, “Biharmonic functions on groups and limit theorems for quasimorphisms along random walks”, Geom. Topol., 15 (2011), 123–143 | DOI | MR | Zbl
[6] D. Calegari, J. Maher, Statistics and compression of scl, preprint, 2010, arXiv: 1008.4952
[7] R. P. Dilworth, “A decomposition theorem for partially ordered sets”, Ann. Math., 51:1 (1950), 161–166 | DOI | MR | Zbl
[8] K. Engel, Sperner Theory, Cambridge University Press, Cambridge–New York, 1997 | MR | Zbl | Zbl
[9] T. Ito, “Braid ordering and the geometry of closed braid”, Geom. Topol., 15 (2011), 473–498 | DOI | MR | Zbl
[10] T. Ito, Braid ordering and knot genus, preprint, 2008, arXiv: 0805.2042 | MR
[11] E. Kowalski, The Large Sieve and its Applications: Arithmetic Geometry, Random Walks and Discrete Groups, Cambridge Tracts in Math., 175, Cambridge University Press, Cambridge, 2008 | MR | Zbl
[12] A. Lubotzky, C. Meiri, Sieve methods in group theory II: The mapping class group, preprint, 2011, arXiv: 1104.2450 | MR
[13] J. Maher, “Random walks on the mapping class group”, Duke Math. J., 156:3 (2011), 429–468 | DOI | MR | Zbl
[14] J. Maher, Exponential decay in the mapping class group, preprint, 2011, arXiv: 1104.5543 | MR
[15] J. Malestein, J. Souto, On genericity of pseudo-Anosovs in the Torelli group, preprint, 2011, arXiv: 1102.0601 | MR
[16] St. Petersburg Math. J., 15:3 (2004), 437–448 | DOI | MR | Zbl
[17] I. Rivin, “Walks on groups, counting reducible matrices, polynomials, and surface and free group automorphisms”, Duke Math. J., 142:2 (2008), 353–379 | DOI | MR | Zbl
[18] I. Rivin, “Walks on graphs and lattices – effective bounds and applications”, Forum Math., 21:4 (2009), 673–685 | DOI | MR | Zbl
[19] I. Rivin, “Zariski density and genericity”, Int. Math. Res. Not. IMRN, 19 (2010), 3649–3657 | MR | Zbl
[20] F. Spitzer, Principles of Random Walk, Graduate Texts in Mathematics, 34, Springer-Verlag, 1976 | MR | Zbl