Quasimorphisms, random walks, and transient subsets in countable groups
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XX, Tome 390 (2011), pp. 210-236

Voir la notice de l'article provenant de la source Math-Net.Ru

We study interrelations between the theory of quasimorphisms and theory of random walks on groups, and establish the following criterion of transience for subsets of groups: if a subset of a countable group has bounded images under any three linearly independent homogeneous quasimorphisms on the group, then this subset is transient for all nondegenerate random walks on the group. From this it follows by results of M. Bestvina, K. Fujiwara, J. Birman, W. Menasco, and others that, in a certain sense, generic elements in mapping class groups of surfaces are pseudo-Anosov, generic braids in Artin's braid groups represent prime links and knots, generic elements in the commutant of every non-elementary hyperbolic group have large stable commutator length, etc.
@article{ZNSL_2011_390_a8,
     author = {A. V. Malyutin},
     title = {Quasimorphisms, random walks, and transient subsets in countable groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {210--236},
     publisher = {mathdoc},
     volume = {390},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a8/}
}
TY  - JOUR
AU  - A. V. Malyutin
TI  - Quasimorphisms, random walks, and transient subsets in countable groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 210
EP  - 236
VL  - 390
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a8/
LA  - en
ID  - ZNSL_2011_390_a8
ER  - 
%0 Journal Article
%A A. V. Malyutin
%T Quasimorphisms, random walks, and transient subsets in countable groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 210-236
%V 390
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a8/
%G en
%F ZNSL_2011_390_a8
A. V. Malyutin. Quasimorphisms, random walks, and transient subsets in countable groups. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XX, Tome 390 (2011), pp. 210-236. http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a8/