Big and small elements in Chevalley groups
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 20, Tome 386 (2011), pp. 203-226

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\widetilde G$ be a reductive algebraic group which is defined and split over a field $K$. Here we consider the Zariski open subset $\mathfrak B$ of the group $\widetilde G$ which consists of elements such that their conjugacy classes intersect the Big Bruhat Cell. In particular, we give a description of the set $\mathfrak B(K)$ in the case $\widetilde G=\mathrm{GL}_n,\mathrm{SL}_n$. Bibl. 16 titles.
@article{ZNSL_2011_386_a4,
     author = {N. L. Gordeev and E. W. Ellers},
     title = {Big and small elements in {Chevalley} groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {203--226},
     publisher = {mathdoc},
     volume = {386},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_386_a4/}
}
TY  - JOUR
AU  - N. L. Gordeev
AU  - E. W. Ellers
TI  - Big and small elements in Chevalley groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 203
EP  - 226
VL  - 386
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_386_a4/
LA  - en
ID  - ZNSL_2011_386_a4
ER  - 
%0 Journal Article
%A N. L. Gordeev
%A E. W. Ellers
%T Big and small elements in Chevalley groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 203-226
%V 386
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_386_a4/
%G en
%F ZNSL_2011_386_a4
N. L. Gordeev; E. W. Ellers. Big and small elements in Chevalley groups. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 20, Tome 386 (2011), pp. 203-226. http://geodesic.mathdoc.fr/item/ZNSL_2011_386_a4/