Big and small elements in Chevalley groups
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 20, Tome 386 (2011), pp. 203-226 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\widetilde G$ be a reductive algebraic group which is defined and split over a field $K$. Here we consider the Zariski open subset $\mathfrak B$ of the group $\widetilde G$ which consists of elements such that their conjugacy classes intersect the Big Bruhat Cell. In particular, we give a description of the set $\mathfrak B(K)$ in the case $\widetilde G=\mathrm{GL}_n,\mathrm{SL}_n$. Bibl. 16 titles.
@article{ZNSL_2011_386_a4,
     author = {N. L. Gordeev and E. W. Ellers},
     title = {Big and small elements in {Chevalley} groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {203--226},
     year = {2011},
     volume = {386},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_386_a4/}
}
TY  - JOUR
AU  - N. L. Gordeev
AU  - E. W. Ellers
TI  - Big and small elements in Chevalley groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 203
EP  - 226
VL  - 386
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_386_a4/
LA  - en
ID  - ZNSL_2011_386_a4
ER  - 
%0 Journal Article
%A N. L. Gordeev
%A E. W. Ellers
%T Big and small elements in Chevalley groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 203-226
%V 386
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_386_a4/
%G en
%F ZNSL_2011_386_a4
N. L. Gordeev; E. W. Ellers. Big and small elements in Chevalley groups. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 20, Tome 386 (2011), pp. 203-226. http://geodesic.mathdoc.fr/item/ZNSL_2011_386_a4/

[1] A. Borel, Linear Algebraic groups, Graduate texts in mathematics, 126, 2nd enl. ed., Springer-Verlag New York Inc., 1991 | DOI | MR | Zbl

[2] N. Bourbaki, Éléments de Mathématique. Groupes et Algèbres de Lie, Chap. IV, V, VI, 2ème édition, Masson, Paris, 1981 | MR

[3] R. W. Carter, Finite Groups of Lie Type, Conjugacy Classes and Complex Characters, John Wiley Sons, Chichester et al., 1985 | MR | Zbl

[4] Key Yuen Chan, Jiang-Hua Lu, Simon Kai Ming To, “On intersections of conjugacy classes and Bruhat cells”, Transformation groups, 15:2 (2010), 243–260 | DOI | MR

[5] E. W. Ellers, N. Gordeev, “Intersection of conjugacy classes with Bruhat cells in Chevalley groups”, Pacific J. Math., 214:2 (2004), 245–261 | DOI | MR | Zbl

[6] E. W. Ellers, N. Gordeev, “Intersection of conjugacy classes with Bruhat cells in Chevalley groups: The cases $\mathrm{SL}_n(K)$, $\mathrm{GL}_n(K)$”, J. Pure and Appl. Algebra, 209 (2007), 703–723 | DOI | MR | Zbl

[7] J. E. Humphreys, Linear Algebraic Groups, Graduate Texts in Mathematics, 21, Springer-Verlag, New York–Heidelberg–Berlin, 1975 | DOI | MR | Zbl

[8] N. Kawanaka, “Unipotent elements and characters of finite Chevalley groups”, Osaka J. Math., 12:2 (1975), 523–554 | MR | Zbl

[9] G. Lusztig, From conjugacy classes in the Weyl Group to unipotent classes, 2010, arXiv: 1003.0412v4

[10] G. Lusztig, On $C$-small conjugacy classes in a reductive group, 2010, arXiv: 1005.4313v1 | MR

[11] J. N. Spaltenstein, Classes unipotentes et sous-groupes de Borel, Lect. Notes Math., 946, Springer-Verlag, Berlin–Heidelberg–New York, 1980 | MR

[12] T. A. Springer, Linear Algebraic Groups, Progress in Mathematics, 9, 2nd edition, Birkhäuser Boston, Boston, MA, 1998 | MR | Zbl

[13] T. A. Springer, R. Steinberg, “Conjugacy classes”: A. Borel et al, Seminar on Algebraic Groups and Related Finite Groups, Part E, Lect. Notes Math., 131, Springer-Verlag, Berlin–Heidelberg–New York, 1970, 167–266 | DOI | MR

[14] R. Steinberg, “Regular elements of semisimple algebraic groups”, Inst. Hautes Études Sci. Publ. Math., 25 (1965), 49–80 | DOI | MR

[15] Vestnik Leningrad Univ. Math., 22:3 (1989), 1–6 | MR | Zbl

[16] N. A. Vavilov, A. A. Semenov, “Bruhat decomposition for long root tori in Chevalley groups”, Zap. Nauchn. Semin. LOMI, 175, 1989, 12–23 | MR | Zbl