Big and small elements in Chevalley groups
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 20, Tome 386 (2011), pp. 203-226
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\widetilde G$ be a reductive algebraic group which is defined and split over a field $K$. Here we consider the Zariski open subset $\mathfrak B$ of the group $\widetilde G$ which consists of elements such that their conjugacy classes intersect the Big Bruhat Cell. In particular, we give a description of the set $\mathfrak B(K)$ in the case $\widetilde G=\mathrm{GL}_n,\mathrm{SL}_n$. Bibl. 16 titles.
@article{ZNSL_2011_386_a4,
author = {N. L. Gordeev and E. W. Ellers},
title = {Big and small elements in {Chevalley} groups},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {203--226},
publisher = {mathdoc},
volume = {386},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_386_a4/}
}
N. L. Gordeev; E. W. Ellers. Big and small elements in Chevalley groups. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 20, Tome 386 (2011), pp. 203-226. http://geodesic.mathdoc.fr/item/ZNSL_2011_386_a4/