Chevalley group of type $\mathrm E_7$ in the 56-dimensional representation
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 20, Tome 386 (2011), pp. 5-99 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The present paper is devoted to a detailed computer study of the action of Chevalley group $G(\mathrm E_7,R)$ on the 56-dimensional minimal module $V(\varpi_7)$. Our main objectives are an explicit choice and tabulation of the signs of structure constants for this action, compatible with a given choice of a positive Chevalley base, construction of multilinear invariants and of the equations, satisfied by the matrix entries of matrices from $G(\mathrm E_7,R)$ in this representation, and explicit tabulation of root elements. These calculations are performed in four numberings of weights: the natural one, as well as those compatible with the $\mathrm A_6$-branching, the $\mathrm D_6$-branching, and the $\mathrm E_6$-branching. Similar tables for the action of Chevalley group $G(\mathrm E_6,R)$ on the 27-dimensional minimal module $V(\varpi_1)$ were published in our joint paper with Igor Pevzner. Bibl. 142 titles.
@article{ZNSL_2011_386_a0,
     author = {N. A. Vavilov and A. Yu. Luzgarev},
     title = {Chevalley group of type $\mathrm E_7$ in the 56-dimensional representation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--99},
     year = {2011},
     volume = {386},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_386_a0/}
}
TY  - JOUR
AU  - N. A. Vavilov
AU  - A. Yu. Luzgarev
TI  - Chevalley group of type $\mathrm E_7$ in the 56-dimensional representation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 5
EP  - 99
VL  - 386
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_386_a0/
LA  - ru
ID  - ZNSL_2011_386_a0
ER  - 
%0 Journal Article
%A N. A. Vavilov
%A A. Yu. Luzgarev
%T Chevalley group of type $\mathrm E_7$ in the 56-dimensional representation
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 5-99
%V 386
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_386_a0/
%G ru
%F ZNSL_2011_386_a0
N. A. Vavilov; A. Yu. Luzgarev. Chevalley group of type $\mathrm E_7$ in the 56-dimensional representation. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 20, Tome 386 (2011), pp. 5-99. http://geodesic.mathdoc.fr/item/ZNSL_2011_386_a0/

[1] E. Abe, “Avtomorfizmy grupp Shevalle nad kommutativnymi koltsami”, Algebra i Analiz, 5:2 (1993), 74–90 | MR | Zbl

[2] A. Borel, “Svoistva i lineinye predstavleniya grupp Shevalle”, Seminar po algebraicheskim gruppam, Mir, M., 1973, 9–59 | MR

[3] N. Burbaki, Gruppy i algebry Li, Glavy IV–VI, Mir, M., 1972 | MR | Zbl

[4] N. Burbaki, Gruppy i algebry Li, Glavy VII, VIII, Mir, M., 1978 | MR

[5] E. I. Bunina, “Avtomorfizmy grupp Shevalle tipov $\mathrm A_l$, $\mathrm D_l$ i $\mathrm E_l$ nad lokalnymi koltsami s 1/2”, Fundam. Prikl. Mat., 15:2 (2009), 35–59 | MR

[6] E. I. Bunina, “Avtomorfizmy elementarnykh prisoedinennykh grupp Shevalle tipov $\mathrm A_l$, $\mathrm D_l$ i $\mathrm E_l$ nad lokalnymi koltsami s 1/2”, Algebra i Logika, 48:4 (2009), 443–470 | MR | Zbl

[7] N. A. Vavilov, “Kak uvidet znaki strukturnykh konstant?”, Algebra i Analiz, 19:4 (2007), 34–68 | MR

[8] N. A. Vavilov, “Vychisleniya v isklyuchitelnykh gruppakh”, Vestn. Samarsk. un-ta. Estestvennonauchnaya ser., 2007, no. 7, 11–24

[9] N. A. Vavilov, “Numerologiya kvadratnykh uravnenii”, Algebra i analiz, 20:5 (2008), 9–40 | MR

[10] N. A. Vavilov, “Stroenie izotropnykh reduktivnykh grupp”, Trudy In-ta Matematiki NAN Belarusi, 18:1 (2010), 15–27

[11] N. A. Vavilov, “Esche nemnogo isklyuchitelnoi numerologii”, Zap. nauchn. semin. POMI, 375, 2010, 22–31 | MR | Zbl

[12] N. A. Vavilov, “$\mathrm A_3$-dokazatelstvo strukturnykh teorem dlya grupp Shevalle tipov $\mathrm E_6$ i $\mathrm E_7$. II. Osnovnaya lemma”, Algebra i analiz (to appear)

[13] N. A. Vavilov, M. R. Gavrilovich, “$\mathrm A_2$-dokazatelstvo strukturnykh teorem dlya grupp Shevalle tipov $\mathrm E_6$ i $\mathrm E_7$”, Algebra i Analiz, 16:4 (2004), 54–87 | MR | Zbl

[14] N. A. Vavilov, M. R. Gavrilovich, S. I. Nikolenko, “Stroenie grupp Shevalle: dokazatelstvo iz knigi”, Zap. nauchn. semin. POMI, 330, 2006, 36–76 | MR | Zbl

[15] N. A. Vavilov, A. Yu. Luzgarev, “Normalizator gruppy Shevalle tipa $\mathrm E_6$”, Algebra i analiz, 19:5 (2007), 37–64 | MR

[16] N. A. Vavilov, A. Yu. Luzgarev, “Normalizator gruppy Shevalle tipa $\mathrm E_7$” (to appear)

[17] N. A. Vavilov, A. Yu. Luzgarev, “$\mathrm A_2$-dokazatelstvo strukturnykh teorem dlya gruppy Shevalle tipa $\mathrm E_8$” (to appear)

[18] N. A. Vavilov, A. Yu. Luzgarev, I. M. Pevzner, “Gruppa Shevalle tipa $\mathrm E_6$ v 27-mernom predstavlenii”, Zap. nauchn. semin. POMI, 338, 2006, 5–68 | MR | Zbl

[19] N. A. Vavilov, S. I. Nikolenko, “$\mathrm A_2$-dokazatelstvo strukturnykh teorem dlya grupp Shevalle tipa $\mathrm F_4$”, Algebra i Analiz, 20:4 (2008), 27–63 | MR

[20] N. A. Vavilov, A. V. Stepanov, “Nadgruppy poluprostykh grupp”, Vestn. Samarskogo un-ta, Estestvennonauchnaya ser., 2008, no. 3, 51–95 | MR

[21] A. Yu. Luzgarev, “O nadgruppakh $E(\mathrm E_6,R)$ i $E(\mathrm E_7,R)$ v minimalnykh predstavleniyakh”, Zap. nauchn. semin. POMI, 319, 2004, 216–243 | MR | Zbl

[22] A. Yu. Luzgarev, “Nadgruppy $\mathrm E(\mathrm F_4,R)$ v $G(\mathrm E_6,R)$”, Algebra i Analiz, 20:6 (2008), 148–185 | MR

[23] A. Yu. Luzgarev, Nadgruppy isklyuchitelnykh grupp, Kand. Diss., SPb Gos Un-t, 2008, 106 pp.

[24] A. Yu. Luzgarev, “Ne zavisyaschie ot kharakteristiki invarianty chetvertoi stepeni dlya $G(\mathrm E_7,R)$” (to appear)

[25] A. Yu. Luzgarev, “Uravneniya, opredelyayuschie orbitu starshego vesa v prisoedinennom predstavlenii” (to appear)

[26] A. Yu. Luzgarev, A. K. Stavrova, “Elementarnaya podgruppa izotropnoi reduktivnoi gruppy sovershenna”, Algebra i Analiz (to appear)

[27] Yu. I. Manin, Kubicheskie formy: algebra, geometriya, arifmetika, Nauka, M., 1972 | MR | Zbl

[28] I. M. Pevzner, Kornevye elementy v isklyuchitelnykh gruppakh, Kand. Diss., SPb Gos Un-t, 2008, 149 pp.

[29] I. M. Pevzner, “Geometriya kornevykh podgrupp v gruppakh tipa $\mathrm E_6$”, Algebra i Analiz (to appear)

[30] I. M. Pevzner, “Shirina grupp tipa $\mathrm E_6$ otnositelno mnozhestva kornevykh elementov. I”, Algebra i Analiz (to appear)

[31] V. A. Petrov, A. K. Stavrova, “Elementarnye podgruppy izotropnykh reduktivnykh grupp”, Algebra i Analiz, 20:4 (1978), 160–188 | MR

[32] E. B. Plotkin, “Syur'ektivnaya stabilizatsiya $K_1$-funktora dlya nekotorykh isklyuchitelnykh grupp Shevalle”, Zap. nauchn. semin. POMI, 198, 1991, 65–88 | MR | Zbl

[33] T. A. Springer, “Lineinye algebraicheskie gruppy”, Itogi nauki i tekhn. Cer. sovr. problemy mat. Fundam. napravl., 55, VINITI, M., 1989, 5–136 | MR | Zbl

[34] A. K. Stavrova, Stroenie izotropnykh reduktivnykh grupp, Kand. Diss., SPb Gos Un-t, 2009, 158 pp.

[35] R. Steinberg, Lektsii o gruppakh Shevalle, Mir, M., 1975 | MR | Zbl

[36] D. Khamfri, Lineinye algebraicheskie gruppy, Nauka, M., 1980 | MR

[37] D. Khamfri, Vvedenie v teoriyu algebr Li i ikh predstavlenii, MTsNMO, M., 2003

[38] R. Khartskhorn, Algebraicheskaya geometriya, Mir, M., 1981 | MR

[39] E. Abe, “Chevalley groups over local rings”, Tôhoku Math. J., 21:3 (1969), 474–494 | DOI | MR | Zbl

[40] E. Abe, “Whitehead groups of Chevalley groups over polynomial rings”, Comm. Algebra, 11:12 (1983), 1271–1307 | DOI | MR | Zbl

[41] E. Abe, “Chevalley groups over commutative rings”, Radical Theory (Sendai, 1988), Uchida Rokakuho, Tokyo, 1989, 1–23 | MR

[42] E. Abe, “Normal subgroups of Chevalley groups over commutative rings”, Algebraic $K$-theory and algebraic number theory (Honolulu, HI, 1987), Contemp. Math., 83, Amer. Math. Soc., Providence, RI, 1989, 1–17 | DOI | MR

[43] E. Abe, K. Suzuki, “On normal subgroups of Chevalley groups over commutative rings”, Tôhoku Math. J. (2), 28:2 (1976), 185–198 | DOI | MR | Zbl

[44] M. Aschbacher, “Some multilinear forms with large isometry groups”, Geom. Dedicata, 25:1–3 (1988), 417–465 | MR | Zbl

[45] H. Azad, M. Barry, G. M. Seitz, “On the structure of parabolic subgroups”, Comm. Algebra, 18:2 (1990), 551–562 | DOI | MR | Zbl

[46] J. Baez, “The octonions”, Bull. Amer. Math. Soc., 39 (2002), 145–205 | DOI | MR | Zbl

[47] A. Bak, R. Hazrat, N. Vavilov, “Localization-completion strikes again: relative $\mathrm K_1$ is nilpotent”, J. pure appl. Algebra, 213 (2009), 1075–1085 | DOI | MR | Zbl

[48] M. Brion, V. Lakshmibai, “A geometric approach to standard monomial theory”, J. Representation Theory, 7 (2003), 651–680 | DOI | MR | Zbl

[49] A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance regular graphs, Springer-Verlag, N.Y. et al., 1989 | MR | Zbl

[50] R. B. Brown, “A new type of nonassociative algebras”, Proc. Nat. Acad. Sci. USA, 50:5 (1963), 947–949 | DOI | MR | Zbl

[51] R. B. Brown, “A minimal representation for the Lie algebra $\mathrm E_7$”, Ill. J. Math., 12:1 (1968), 190–200 | MR | Zbl

[52] R. B. Brown, “Groups of type $\mathrm E_7$”, J. reine angew. Math., 236 (1969), 79–102 | DOI | MR | Zbl

[53] R. Brylinski, B. Kostant, “Minimal representations of $\mathrm E_6$, $\mathrm E_7$, and $\mathrm E_8$ and the generalized Capelli identity”, Proc. Nat. Acad. Sci. U.S.A., 91:7 (1994), 2469–2472 | DOI | MR | Zbl

[54] N. Burgoyne, C. Williamson, “Some computations involving simple Lie algebras”, Symposium on Symbolic and Algebraic Manipulation, Ass. Comp. Mach., New York, 1971, 162–171 | DOI

[55] R. W. Carter, Simple groups of Lie type, Pure and Applied Mathematics, 28, John Wiley Sons, London–New York–Sydney, 1972 | MR

[56] R. W. Carter, Finite groups of Lie type: Conjugacy classes and complex characters, John Wiley Sons, London et al., 1985 | MR | Zbl

[57] P. E. Chaput, L. Manivel, N. Perrin, Quantum cohomology of minuscule homogeneous varieties, ccsd-0086927, 28 Sep 2006, 34 pp.

[58] Y. Choi, S. Yoon, “Homology of the double and the triple loop spaces of $\mathrm E_6$, $\mathrm E_7$ and $\mathrm E_8$”, Manuscripta Math., 103 (2000), 101–116 | DOI | MR | Zbl

[59] V. Chernousov, “The kernel of the Rost invariant, Serre's conjecture II and the Hasse principle for quasi-split groups $\mathrm D_4$, $\mathrm E_6$, $\mathrm E_7$”, Math. Ann., 326:2 (2003), 297–330 | DOI | MR | Zbl

[60] A. M. Cohen, R. H. Cushman, “Gröbner bases and standard monomail theory”, Computational algebraic geometry (Nice, 1992), Progr. Math., 109, Birkhäuser Boston, Boston, MA, 1993, 41–60 | MR | Zbl

[61] A. M. Cohen, S. H. Murray, D. E. Taylor, “Computing in groups of Lie type”, Math. Comput., 73 (2004), 1477–1498 | DOI | MR | Zbl

[62] B. N. Cooperstein, “The fifty-six-dimensional module for $\mathrm E_7$. I. A four form for $\mathrm E_7$”, J. Algebra, 173:2 (1995), 361–389 | DOI | MR | Zbl

[63] T. De Medts, “A characterization of quadratic forms of type $\mathrm E_6$, $\mathrm E_7$ and $\mathrm E_8$”, J. Algebra, 252:2 (2002), 394–410 | DOI | MR | Zbl

[64] L. E. Dickson, “The configurations of the 27 lines on a cubic surface and the 28 bitangents to a quartic curve”, Amer. Math. Soc. Bull., 8 = Coll. Math. Papers, 5 (1901), 63–70 | DOI | MR

[65] D. -Doković, “Explicit Cayley triples in real forms of $\mathrm E_7$”, Pacific J. Math., 191 (1999), 1–23 | DOI | MR

[66] D. -Doković, “The closure diagram for nilpotent orbits of the split real form of $\mathrm E_7$”, Reprent. Theory, 5 (2001), 284–316 | DOI | MR

[67] J. R. Faulkner, “A geometry for $\mathrm E_7$”, Trans. Amer. Math. Soc., 167 (1972), 49–58 | MR | Zbl

[68] J. R. Faulkner, J. C. Ferrar, “Exceptional Lie algebras and related algebraic and geometric structures”, Bull. London Math. Soc., 9:1 (1977), 1–35 | DOI | MR | Zbl

[69] J. C. Ferrar, “Strictly regular elements in Freudenthal triple systems”, Trans. Amer. Math. Soc., 174 (1972), 313–331 | DOI | MR

[70] J. C. Ferrar, “On the classification of Freudenthal triple systems and Lie algebras of type $\mathrm E_7$”, J. Algebra, 62 (1980), 276–282 | DOI | MR | Zbl

[71] I. B. Frenkel, V. Kac, “Basic representations of affine Lie algebras and dual resonance models”, Invent. Math., 62:2 (1980), 23–66 | DOI | MR | Zbl

[72] I. B. Frenkel, J. Lepowsky, A. Meurman, Vertex operator algebras and the Monster, Academic Press, N.Y. et al., 1988 | MR | Zbl

[73] H. Freudenthal, “Sur des invariantes caractéristiques des groupes semi-simples”, Proc. Nederl. Akad. Wetensch. Ser. A, 56 (1953), 90–94 | MR | Zbl

[74] H. Freudenthal, “Sur le groupe exceptionnel $\mathrm E_7$”, Proc. Nederl. Akad. Wetensch. Ser. A, 56 (1953), 81–89 | MR | Zbl

[75] H. Freudenthal, “Zur ebenen Oktavengeometrie”, Indag. Math., 15 (1953), 195–200 | MR

[76] H. Freudenthal, “Beziehungen der $\mathrm E_7$ und $\mathrm E_8$ zur Oktavenebene I”, Proc. Nederl. Akad. Wetensch. Ser. A, 57 (1954), 218–230 ; “II”, 57 (1954), 363–368 ; “III”, 58 (1955), 151–157 ; “IV”, 58 (1955), 277–285 ; “V”, 62 (1959), 165–179 ; “VI”, 62 (1959), 180–191 ; “VII”, 62 (1959), 192–201 ; “VIII”, 62 (1959), 447–465 ; “IX”, 62 (1959), 466–474 ; “X”, 66 (1963), 457–471 ; “XI”, 66 (1963), 472–487 | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl | MR | MR | Zbl

[77] H. Freudenthal, “Oktaven, Ausnahmegruppen und Oktavengeometrie”, Geom. Dedic., 19 (1985), 7–63 | DOI | MR | Zbl

[78] R. S. Garibaldi, “Structurable algebras and groups of type $\mathrm E_6$ and $\mathrm E_7$”, J. Algebra, 236:2 (2001), 651–691 | DOI | MR | Zbl

[79] R. S. Garibaldi, “Groups of type $\mathrm E_7$ over arbitrary fields”, Comm. Algebra, 29:6 (2001), 2689–2710 | DOI | MR | Zbl

[80] R. S. Garibaldi, Cohomological invariants: exceptional groups and $\mathrm{Spin}$ groups, Preprint, Emory Univ. Atlanta, 2006, 75 pp., with and appendix by D. W. Hoffmann | MR

[81] Ph. Gille, “Le problème de Kneser–Tits”, Sèminaire Bourbaki, 983, 2007, 1–39 | MR

[82] P. B. Gilkey, G. M. Seitz, “Some representations of exceptional Lie algebras”, Geom. Dedicata, 25:1–3 (1988), 407–416 | MR | Zbl

[83] D. Ginzburg, “On standard $L$-functions for $\mathrm E_6$ and $\mathrm E_7$”, J. Reine Angew. Math., 465 (1995), 101–131 | DOI | MR | Zbl

[84] N. Gonciulea, V. Lakshmibai, Gröbner bases and standard monomial bases, 2001, 8 pp.

[85] R. Griess, A. Ryba, “Embeddings of $U_3(8)$, $\mathrm{Sz}(8)$ and the Rudvalis group in algebraic groups of type $\mathrm E_7$”, Invent. Math., 116 (1994), 215–141 | DOI | MR

[86] A. L. Harebov, N. A. Vavilov, “On the lattice of subgroups of Chevalley groups containing a split maximal torus”, Comm. Algebra, 24:1 (1996), 109–133 | DOI | MR | Zbl

[87] S. J. Haris, “Some irreductible representations of exceptional algebraic groups”, Amer. J. Math., 93 (1971), 75–106 | DOI | MR | Zbl

[88] R. Hazrat, V. Petrov, N. Vavilov, “Relative subgroups in Chevalley groups”, J. $\mathrm K$-theory, 5 (2010), 603–618 | DOI | MR | Zbl

[89] R. Hazrat, N. Vavilov, Zhang Zuhong, “Relative commutator calculus in Chevalley groups”, J. Algebra (to appear) , 28 pp. | MR

[90] J.-Y. Hée, “Groupes de Chevalley et groupes classiques”, Seminar on finite groups, v. II, Publ. Math. Univ. Paris VII, 17, Univ. Paris VII, Paris, 1984, 1–54 | MR

[91] R. B. Howlett, L. J. Rylands, D. E. Taylor, “Matrix generators for exceptional groups of Lie type”, J. Symb. Comput., 11 (2000), 1–17 | MR

[92] H. Kaji, O. Yasukura, “Projective geometry of Freudenthal's varieties of certain type”, Michigan Math. J., 52:3 (2004), 515–542 | DOI | MR | Zbl

[93] V. Kac, Infinite dimensional Lie algebras, 2nd ed., Cambridge Univ. Press, 1985 | MR | Zbl

[94] P. Kleidman, A. Ryba, “Kostant's conjecture holds for $\mathrm E_7$: $L_2(37)\mathrm E_7(\mathbb C)$”, J. Algebra, 161 (1993), 535–540 | DOI | MR | Zbl

[95] P. Kleidman, U. Meierfrankenfeld, A. Ryba, “$\operatorname{HS}\mathrm E_7(5)$”, J. London Math. Soc., 60 (1999), 95–107 | DOI | MR | Zbl

[96] V. Lakshmibai, P. Littelmann, P. Magyar, “Standard monomial theory and applications”, Representation Theory and Geometry, Kluwer Acad. Publ., Dordrecht et al., 1998, 319–364 | DOI | MR | Zbl

[97] V. Lakshmibai, C. S. Seshadri, “Standard monomial theory”, Hyderabad Conf. on Algebraic Groups, Manoj Prakashan, Madras, 1991, 279–323 | MR

[98] J. M. Landsberg, L. Manivel, “The projective geometry of Freudenthal's magic square”, J. Algebra, 239:2 (2001), 477–512 | DOI | MR | Zbl

[99] W. Lichtenstein, “A system of quadrics describing the orbit of the highest weight vector”, Proc. Amer. Math. Soc., 84:4 (1982), 605–608 | DOI | MR | Zbl

[100] P. Littelmann, “Contracting modules and standard monomial theory for symmetrisable Kac–Moody algebras”, J. Amer. Math. Soc., 11 (1998), 551–567 | DOI | MR | Zbl

[101] P. Littelmann, “The path model, the quantum Frobenius map and standard monomial theory”, Algebraic Groups and Their Representations, Kluwer Acad. Publ., Dordrecht et al., 1998, 175–212 | DOI | MR | Zbl

[102] J. Lurie, “On simply laced Lie algebras and their minuscule representations”, Comment. Math. Helv., 166 (2001), 515–575 | DOI | MR

[103] A. Luzgarev, V. Petrov, N. Vavilov, “Explicit equations on orbit of the highest weight vector” (to appear)

[104] J. G. M. Mars, “Les nombres de Tamagawa de certains groupes exceptionnels”, Bull. Soc. Math. France, 94 (1966), 97–140 | MR | Zbl

[105] H. Matsumoto, “Sur les sous-groupes arithmétiques des groupes semi-simples déployés”, Ann. Sci. École Norm. Sup. (4), 2 (1969), 1–62 | MR | Zbl

[106] K. Mizuno, “The conjugate classes of unipotent elements of the Chevalley groups $\mathrm E_7$ and $\mathrm E_8$”, Tokyo J. Math., 3:2 (1980), 391–461 | DOI | MR

[107] C. Parker, G. E. Röhrle, Minuscule representations

[108] V. Petrov, N. Semenov, K. Zainoulline, “Zero cycles on a twisted Cayley plane”, Canad. Math. Bull., 51:1 (2008), 114–124 | DOI | MR | Zbl

[109] V. Petrov, A. Stavrova, “Tits indices over semilocal rings”, Transformation Groups (to appear) , 25 pp.

[110] V. Petrov, A. Stavrova, N. Vavilov, “Relative elementary subgroups in isotropic reductive groups” (to appear)

[111] E. B. Plotkin, “On the stability of the $K_1$-functor for Chevalley groups of type $\mathrm E_7$”, J. Algebra, 210:1 (1998), 67–85 | DOI | MR | Zbl

[112] E. B. Plotkin, A. A. Semenov, N. A. Vavilov, “Visual basic representations: an atlas”, Internat. J. Algebra Comput., 8:1 (1998), 61–95 | DOI | MR | Zbl

[113] R. Richardson, G. E. Röhrle, R. Steinberg, “Parabolic subgroups with abelian unipotent radical”, Invent. Math., 110:3 (1992), 649–671 | DOI | MR | Zbl

[114] G. E. Röhrle, “On the structure of parabolic subgroups in algebraic groups”, J. Algebra, 157:1 (1993), 80–115 | DOI | MR | Zbl

[115] G. E. Röhrle, “On extraspecial parabolic subgroups”, Contemp. Math., 153 (1993), 143–155 | DOI | MR | Zbl

[116] H. Rubenthaler, “The $(\mathrm A_2,\mathrm G_2)$ duality in $\mathrm E_6$, octonions and the triality principle”, Trans. Amer. Math. Soc., 360:1 (2008), 347–367 | DOI | MR | Zbl

[117] A. J. E. Ryba, “Identification of matrix generators of a Chevalley group”, J. Algebra, 309 (2007), 484–496 | DOI | MR | Zbl

[118] L. J. Rylands, D. E. Taylor, Construction for octonion and exceptional Jordan algebras, Preprint, Univ. Sydney, 2000, 11 pp. | MR

[119] J. Sekiguchi, “Configurations of seven lines on the real projective plane and the root system of type $\mathrm E_7$”, J. Math. Soc. Japan, 51:4 (1999), 987–1013 | DOI | MR | Zbl

[120] C. S. Seshadri, “Geometry of $G/P$. I. Standard monomial theory for minuscule $P$”, C. P. Ramanujam: a tribute, Tata Press, Bombay, 1978, 207–239 | MR | Zbl

[121] E. Shult, “Embeddings and hyperplanes of the Lie incidence geometry of type $\mathrm E_{7,1}$”, J. Geom., 59 (1997), 152–172 | DOI | MR | Zbl

[122] T. A. Springer, “Some groups of type $\mathrm E_7$”, Nagoya Math. J., 182 (2006), 259–284 | MR | Zbl

[123] T. A. Springer, F. D. Veldkamp, Octonions, Jordan algebras and exceptional groups, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2000 | DOI | MR | Zbl

[124] A. Stavrova, “Normal structure of maximal parabolic subgroups in Chevalley groups over commutative rings”, Algebra Coll., 16:4 (2009), 631–648 | DOI | MR | Zbl

[125] M. R. Stein, “Generators, relations and coverings of Chevalley groups over commutative rings”, Amer. J. Math., 93 (1971), 965–1004 | DOI | MR | Zbl

[126] M. R. Stein, “Stability theorems for $K_1$, $K_2$ and related functors modeled on Chevalley groups”, Japan. J. Math. (N.S.), 4:1 (1978), 77–108 | MR | Zbl

[127] A. Stepanov, N. Vavilov, “On the length of commutators in Chevalley groups”, Israel J. Math. (to appear) , 20 pp. | MR

[128] G. Taddei, “Normalité des groupes élémentaire dans les groupes de Chevalley sur un anneau”, Applications of algebraic $K$-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983), Contemp. Math., 55, Amer. Math. Soc., Providence, RI, 1986, 693–710 | DOI | MR

[129] J. Tits, “Le plan projectif des octaves et les groupes de Lie exceptionnels”, Acad. Roy. Belg. Bull. Cl. Sci., 39 (1953), 309–329 | MR | Zbl

[130] J. Tits, “Le plan projectif des octaves et les groupes exceptionnels $\mathrm E_6$ et $\mathrm E_7$”, Acad. Roy. Belg. Bull. Cl. Sci., 40 (1954), 29–40 | MR | Zbl

[131] J. Tits, “Algèbres alternatives, algèbres de Jordan et algèbres de Lie exceptionnelles. I. Construction”, Indag. Math., 28 (1966), 223–237 | MR

[132] L. N. Vaserstein, “On normal subgroups of Chevalley groups over commutative rings”, Tôhoku Math. J. (2), 38:2 (1986), 219–230 | DOI | MR | Zbl

[133] N. A. Vavilov, “Structure of Chevalley groups over commutative rings”, Nonassociative algebras and related topics (Hiroshima, 1990), World Sci. Publ., River Edge, NJ, 1991, 219–335 | MR | Zbl

[134] N. A. Vavilov, “A third look at weight diagrams”, Rend. Sem. Mat. Univ. Padova, 104 (2000), 201–250 | MR | Zbl

[135] N. A. Vavilov, “Do it yourself structure constants for Lie algebras of type $\mathrm E_l$”, Zap. nauchn. semin. POMI, 281, 2001, 60–104 | MR | Zbl

[136] N. A. Vavilov, “An $\mathrm A_3$-proof of structure theorems for Chevalley groups of types $\mathrm E_6$ and $\mathrm E_7$”, Int. J. Algebra Comput., 17:5–6 (2007), 1283–1298 | DOI | MR | Zbl

[137] N. A. Vavilov, A. Yu. Luzgarev, A. V. Stepanov, “Calculations in exceptional groups over rings”, Zap. nauchn. semin. POMI, 373, 2009, 48–72 | MR

[138] N. A. Vavilov, E. B. Plotkin, “Chevalley groups over commutative rings. I. Elementary calculations”, Acta Appl. Math., 45:1 (1996), 73–113 | DOI | MR | Zbl

[139] R. Weiss, “Moufang quadrangles of type $\mathrm E_6$ and $\mathrm E_7$”, J. Reine Angew. Math., 590 (2006), 189–226 | DOI | MR | Zbl

[140] Xu Xiaoping, Polynomial representation of $\mathrm F_4$ and a new combinatorial identity about twenty-four, 26 Oct. 2008, 18 pp., arXiv: 0810.4670[math.RT]

[141] Xu Xiaoping, Polynomial representation of $\mathrm E_6$ and its combinatorial and PDE implications, 10 Nov. 2008, 24 pp., arXiv: 0811.1399[math.RT]

[142] Xu Xiaoping, Polynomial representation of $\mathrm E_7$ and its combinatorial and PDE implications, 8 Dec. 2008, 37 pp., arXiv: 0812.1432[math.RT]